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Abstract: In this paper, we investigate the biorthogonal matrix extension problem with sym-

metry and its application to construction of 3-band biorthogonal wavelets with compact supported,

symmetry and high vanishing moments. By using the theory of matrix extension, we obtain the

method of three-dimensional biorthogonal matrix extension with symmetry and a step-by-step al-

gorithm for construction of 3-band biorthogonal wavelets, which is easily implemented by computer

program. Several examples are provided to illustrate the proposed algorithm and results in this

paper.
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1 Introduction

As a generalization of orthogonal wavelets, the biorthogonal wavelets have become a
fundamental tool in many areas of applied mathematics, from signal processing to numerical
analysis [2, 8, 12, 13]. It is well known that 2-band orthogonal wavelet suffers from severe
constraints, such as nontrivial symmetric (linear-phase) 2-band orthogonal wavelet does not
exist [1]. Fortunately, multiwavelets and multiband wavelets with linear phase are designed
as alternatives for more freedom and flexibility [2–5, 9, 10, 12]. (Bi)Orthogonal real-valued
wavelets with symmetry and dilations being greater than two have been reported in [3–7,
9–14]. For example, symmetric compactly supported orthogonal real-valued wavelets with
dilation factor 3 have been obtained by the method of undetermined coefficient and some
special treatments in Chui and Lian [3]. By complicated calculation, only some examples
of compactly supported C1 symmetric orthogonal real-valued wavelets with dilation factor
4 have been obtained in [4].
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Under the framework of MRA, the construction of multiwavelet systems having some
desirable properties say, (bi)orthogonality, symmetry, regularity, and so on can be reduced to
two main parts: One firstly constructs dual scaling filters and functions and then the wavelet
filters and wavelets, which should be able to inherit certain properties similar to those of
their scaling filters. Therefore, in order to obtain a wavelet system, the linchpin is to design
the scaling functions with good properties. It is well known that the second part can be
formulated as a matrix extension problem, see [7, 17]. Goh and Yap in [15] studied the
biorthogonal matrix extension problem and presented a step-by-step algorithm for deriving
the extension matrices. Yet neither did they concern about the lengths of the coefficient
supports of the extension matrices, nor did they considered any symmetry constrain on the
extension matrices. In [16], Chui, Han and Zhuang proposed a dual chain approach for this
problem, which first constructs a top-down dual-chain that essentially reduces the lengths
of the coefficient supports of the given pair of vectors to zero and then derives a bottom-up
dual-chain that produces the desired pair of extension matrices. However, the multiwavelet
systems have unsolved questions in many applied areas such as image compression coding.
In view of this, further study for multi-band wavelet systems is still valuable.

In this paper, we construct the 3-band wavelets, which is perfect reconstruction, biorthog-
onal, symmetric/antisymmetric, the high vanishing moments and compactly supported.
First, by designating the length of the filters and the vanishing moments, we construct
the scaling filters with high vanishing moments and symmetry by solving nonlinear equa-
tions with less parameters. Then, we provide a step-by-step algorithm to construct a class
of biorthogonal 3-band wavelets with symmetry.

2 3-Band Scaling Function and Wavelets

In this section, we shall construct the scaling function with desired properties and
propose an algorithm for obtaining symbols of the corresponding 3-band wavelets. First, we
discuss several results that are useful in the following.

As the case of dyadic wavelet, a pair (φ(x), φ̃(x)) of dual scaling functions can be
expressed as the following dilation equations

φ(x) =
∑
k∈Z

h0(k)φ(3x− k) (2.1)

and
φ̃(x) =

∑
k∈Z

h̃0(k)φ̃(3x− k), (2.2)

respectively, with
〈φ(.− k), φ̃(.− j)〉 = δ(k − j), (2.3)

or equivalently, ∑
k

h0(k)h̃0(k + 3j) = 3δ(j), (2.4)
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where h, g are real number, δ(j) denotes the Dirac sequence such that δ(j) = 1 for j = 0
otherwise δ(j) = 0.

The polyphase decomposition of H0(z) and H̃0(z) are defined by H0,i(z) = 1√
3

∑
k h0(i+

3k)zk, i = 0, 1, 2 and H̃0,i(z) = 1√
3

∑
k h̃0(i + 3k)zk, i = 0, 1, 2, respectively. It is well known

that (2.4) is equivalent to the following equation

H0,0(z)H̃0,0(z−1) + H0,1(z)H̃0,1(z−1) + H0,2(z)H̃0,2(z−1) = 1. (2.5)

In addition, we assume ∑
k

h0(k) =
∑

k

h̃0(k) = 3. (2.6)

Definition 2.1 The filter hi is symmetric/antisymmetric if and only if

hi(k) = ±hi(N − 1− k)(0 ≤ k < N), (2.7)

where N is the length of the filter. Equivalently,

Hi(z) = ±z(N−1)Hi(z−1), (2.8)

where Hi(z) =
∑

k∈Z hi(k)zk.
In [18], Zhang provided an effective algorithm to construct compactly supported sym-

metric biorthogonal multiwavelets by given a pair of biorthogonal matrices. Inspired by this
idea, we shall provide a step-by-step algorithm to construct a class of compactly supported
biorthogonal 3-band wavelets with symmetry. First, we need the following theorem.

Theorem 2.2 Suppose that (A(z), Ã(z)) be a pair of 1× 3 Laurent polynomial vectors
such that

A(z)ÃT (z−1) = 1, (2.9)

and

A1(z) = A1(z−1), A2(z) = A2(z−1), A3(z) = −A3(z−1),

Ã1(z) = Ã1(z−1), Ã2(z) = Ã2(z−1), Ã3(z) = −Ã3(z−1), (2.10)

where A(z) = (A1(z), A2(z), A3(z)), Ã(z) = (Ã1(z), Ã2(z), Ã3(z)).
Let their coefficient support be csupp(A) = [−k, k], csupp(Ã) = [−k̃, k̃], respectively.

Then A(z), and Ã(z) can be written as

A(z) = (a0, b0, c0)z−k + (a1, b1, c1)z1−k + · · ·+ (a1, b1,−c1)zk−1 + (a0, b0,−c0)zk,

Ã(z) = (ã0, b̃0, c̃0)z−k̃ + (ã1, b̃1, c̃1)z1−k̃ + · · ·+ (ã1, b̃1,−c̃1)zk̃−1 + (ã0, b̃0,−c̃0)zk̃.

Assume that a0, b0, c0, ã0, b̃0, c̃0 are nonzero. Then there exists a pair (u(z), ũ(z)) of 3 × 3
Laurent polynomial matrices with symmetry such that

(a) (u(z), ũ(z)) are biorthogonal: u(z)ũT (1/z)) = I3 and the coefficient supports of
u(z), ũ(z) satisfy csupp(u) ⊆ [−1, 1] and csupp(ũ) ⊆ [−1, 1], respectively.
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(b) u(z), ũ(z) reduce the lengths of the coefficient support of A(z) and Ã(z), respectively.

(c) B(z) = A(z)u(z), B̃(z) = Ã(z)ũ(z) satisfies (2.9) and (2.10).

Proof Let us recall the theory of symmetric polynomial operations.

Assume that Laurent polynomials f1(z), f2(z) are symmetric about the points l1, l2,
respectively, and f3(z), f4(z) are antisymmetric about the points l3, l4, respectively. Then

(i) f1(z)f2(z), f3(z)f4(z) are symmetric about the points l1 + l2, l3 + l4, respectively,
and f1(z)f3(z), f2(z)f4(z) are antisymmetric about the points l1 + l3, l2 + l4, respectively.

(ii) If l1 = l2, then f1(z) + f2(z) is symmetric about the point l1; If l3 = l4, then
f3(z) + f4(z) is antisymmetric about the points l3.

Form (2.9), we have

a0ã0 + b0b̃0 − c0c̃0 = 0.

Define

q1(z) =
1

2
√
|c0c̃0|




ã0(z−1 + 1) 2b0 ã0(z−1 − 1)
b̃0(z−1 + 1) −2a0 b̃0(z−1 − 1)
−c̃0(z−1 − 1) 0 −c̃0(z−1 + 1)


 ,

q̃1(z) = sgn(c0c̃0)
1

2
√
|c0c̃0|




a0(z−1 + 1) 2b̃0 a0(z−1 − 1)
b0(z−1 + 1) −2ã0 b0(z−1 − 1)
−c0(z−1 − 1) 0 −c0(z−1 + 1)


 , (2.11)

where sgn(x) is a sign function such that sgn(x) = 1 for x > 0, sgn(x) = 0 for x = 0 and
sgn(x) = −1 for x < 0.

By direct calculation, we can see that q1(z) and q̃1(z) are biorthogonal. It is obvious
that the columns of q1(z) are symmetric/antisymmetric about −1/2, 0,−1/2, respectively.
Since

(a0, b0,−c0)zkq1(z) =
1

2
√
|c0c̃0|

(a0ã0 + b0b̃0 + c0c̃0)zk−1(1, 0, 1)

and

(a0, b0, c0)z−kq1(z) =
1

2
√
|c0c̃0|

(a0ã0 + b0b̃0 + c0c̃0)z−k(1, 0,−1),

we can see that q1(z) reduces the length of the coefficient support of A(z) by 1. Note
that A1(z), A2(z), Ã1(z), Ã2(z) in (2.10) are all symmetric about origin and A3(z), Ã3(z)
are both antisymmetric about origin. It is easy to see that the columns of A(z)q1(z) are
symmetric/antisymmetric about −1/2, 0,−1/2, respectively. It is similar to Ã(z)q̃1(z).

Therefore, without loss of generality, we suppose that

A(z)q1(z) = (d0, 0, f0)z−k + · · ·+ (d0, e1,−f0)zk−1,

Ã(z)q̃1(z) = (f0, 0, d0)z−k̃ + · · ·+ (f0, ẽ1,−d0)zk̃−1.
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Define

q2(z) =
1

2
√
|d0f0|




f0(z + 1) 0 −f0(z − 1)
0 2d0 0

d0(z − 1) 0 −d0(z + 1)


 ,

q̃2(z) = sgn(d0f0)
1

2
√
|d0f0|




d0(z + 1) 0 −d0(z − 1)
0 2f0 0

f0(z − 1) 0 −f0(z + 1)


 . (2.12)

Clearly, q2(z) and q̃2(z) are biorthogonal, and the columns of q2(z) are symmetric/antisymmetric
about 1/2, 0, 1/2, respectively.

Since (d0, 0, f0)z−kq2(z) = d0f0√
|d0f0|

z−k+1(1, 0,−1) and

(d0, e0,−f0)zk−1q2(z) =
1√
|d0f0|

zk−1(d0f0, d0e0, d0f0),

we have q2(z) reduces the length of the coefficient support of A(z)q1(z) by 1. Moreover, the
columns of A(z)q1(z)q2(z) are symmetric/antisymmetric to 0, 0, 0, respectively. It is similar
to Ã(z)q̃1(z)q̃2(z).

In summary, let u(z) = q1(z)q2(z) and ũ(z) = q̃1(z)q̃2(z). Then (u(z), ũ(z)) satisfy (a),
(b) and (c). Moreover, u(z) and ũ(z) reduce the lengths of the coefficient support of A(z) and
Ã(z) by 2, respectively. That is, csupp(A(z)u(z)) = [−k + 1, k − 1] and csupp(Ã(z)ũ(z)) ⊆
[−k̃ + 1, k̃ − 1], respectively.

According to Theorem 2.2, we have a matrix extension algorithm for the polyphase
vectors, see Algorithm 1.

Algorithm 1 (1) Let (H0(z), H̃0(z)) be a pair of dual scaling symbols satisfying (2.4),
(2.6).

(2) Define

A0(z) = z−[N1/6] (H0,0(z),H0,1(z),H0,2(z))
1√
2




1 0 1
0

√
2 0

1 0 −1


 ,

Ã0(z) = z−[N2/6]
(
H̃0,0(z), H̃0,1(z), H̃0,2(z)

) 1√
2




1 0 1
0

√
2 0

1 0 −1


 , (2.13)

where [x] denotes the largest integer less than or equal to x for x ∈ R, N1 and N2 are the
lengths of the filters h0 and h̃0, respectively. Then (A0(z), Ã0(z)) satisfy (2.9) and (2.10).

(3) Recursively applying (2.11) and (2.12) until

AK(z) = AK−1(z)uK−1(z), ÃK(z) = ÃK−1(z)ũK−1(z), (2.14)

and deg(AK(z)) = 0, deg(ÃK(z)) ≥ 0.
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Moreover, AK(z) = (1, 0, 0), ÃK(z)) = (1, p1(z), p2(z)) for Laurent polynomials p1(z)
and p2(z) with symmetry. Define

uK(z) =




1 0 0
p1(z−1) 1 0
p2(z−1) 0 1


 , ũK(z) =




1 −p1(z) −p2(z)
0 1 0
0 0 1


 . (2.15)

By direct calculation, it is obvious that (uK(z), ũK(z)) are biorthogonal and AK(z)uK(z) =
ÃK(z)ũK(z) = (1, 0, 0).

(4) Define
U(z) = ũT

K(z−1)ũT
K−1(z

−1) · · · ũT
0 (z−1),

Ũ(z) = uT
K(z−1)uT

K−1(z
−1) · · ·uT

0 (z−1).

The wavelet symbols can be derived by



H0(z)
H1(z)
H2(z)


 = z[N/6]U(z3) 1√

2




1 0 1
0

√
2 0

1 0 −1







1
z

z2


 ,




H̃0(z)
H̃1(z)
H̃2(z)


 = z[N/6]Ũ(z3) 1√

2




1 0 1
0

√
2 0

1 0 −1







1
z

z2


 ,

(2.16)

where N = max{N1, N2}.

3 Examples

In this section, some examples are given to verify this scheme. we only discuss the
examples of odd lengths 3-band scaling filters.

Example 3.1 Let the lengths of scaling filters be (15, 9). Assume that the scaling
symbols (H0(z), H̃0(z)) have the following form

H0(z) =
(

1+z+z2

3

)5

Q(z),

H̃0(z) =
(

1+z+z2

3

)3

Q̃(z),
(3.1)

where (Q(z), Q̃(z)) are symmetric Laurent polynomials with degree (4, 2).
It is obvious that H0(z) is symmetric if and only if Q(z) is symmetric. By (2.4) and

(2.6), we can obtain the associated scaling filters as follows:

h0 ≈ [0.0302708750, 0.0197271260, 0.0109853080,−0.12261759, 0.011382944, 0.24928687,

0.83207454, 0.93777986],

h̃0 ≈ [−0.20140256,−0.090291448, 0.13193077, 1.0694718, 1.1805829]
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(whereas the other half is symmetric and so skipped). Thus, the polyphase decomposition
of H0(z) and H̃0(z) are as follows:

[
H0,0 H0,1 H0,2

]
,
[

H̃0,0 H̃0,1 H̃0,2

]
,

where

H0,0 ≈ 0.0063423705z4 + 0.14392584z3 + 0.48039846z2 − 0.070793301z + 0.017476898,

H0,1 ≈ 0.011389462z4 + 0.0065719459z3 + 0.54142745z2 + 0.0065719459z + 0.011389462,

H0,2 ≈ 0.017476898z4 − 0.070793301z3 + 0.48039846z2 + 0.14392584z + 0.0063423705,

H̃0,0 ≈ 0.076170268z2 + 0.61745982z − 0.11627982,

H̃0,1 ≈ −0.052129792z2 + 0.68160985z − 0.052129792,

H̃0,2 ≈ −0.11627982z2 + 0.61745982z + 0.076170268.

Define

q1(z) =




0.43323436(z−1 + 1) −0.34795513 0.43323436(z−1 − 1)
0.79629877(z−1 + 1) 0.51455697 0.79629877(z−1 − 1)
−2.0787065(z−1 − 1) 0 −2.0787065(z−1 + 1)


 ,

q̃1(z) =




0.25727848(z−1 + 1) −1.5925975 0.25727848(z−1 − 1)
0.17397756/z(z−1 + 1) 0.86646871 0.17397756(z−1 − 1)
−0.12026710(z−1 − 1) 0 −0.12026710(z−1 + 1)


 .

We have

A0(z)q1(z) ≈ [0.37597811z + 0.43749957 + 0.43749957/z + 0.37597811/z2,

−0.014611995z + 0.042199421− 0.014611995/z,

−0.31051300z − 1.01344319 + 1.01344319/z + 0.31051300/z2],

Ã0(z)q̃1(z) ≈ [0.31051300 + 0.31051300/z,−0.80009451,−0.37597811 + 0.37597811/z].

It follows that d0 = 0.31051300, f0 = 0.37597811 in (2.12). Thus,

A0(z)q1(z)q2(z) ≈ [1.51276001− 0.017108015z − 0.017108015/z,

−0.016078699z + 0.046435260− 0.016078699/z,

0.70047056z − 0.70047056/z],

Ã0(z)q̃1(z)q̃2(z) ≈ [0.68336254,−0.72710963, 0].

Thus, there exist

v =




0.68336254 −0.72710963 0
−0.72710963 −0.68336254 0

0 0 1


 , v−1 =




0.68633245 −0.73026967 0
−0.73026967 −0.68633245 0

0 0 1


 ,
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such that A0(z)q1(z)q2(z)v = (1, p1(z), p2(z)), Ã0(z)q̃1(z)q̃2(z)v−1 = (1, 0, 0), where

p1(z) ≈ −1.13167449285 + 0.0234269828611z + 0.0234269828611z−1,

p2(z) ≈ 0.700470556308z − 0.700470556308z−1.

Therefore, we can obtain (u0(z), ũ0(z)) in (2.14) and (u1(z), ũ1(z)) in (2.15).
We derive the polyphase matrices of high-pass filter banks as follows:

[
H1,0 H1,1 H1,2

H2,0 H2,1 H2,2

]
,

[
H̃1,0 H̃1,1 H̃1,2

H̃2,0 H̃2,1 H̃2,2

]
,

where

H1,0 ≈ −0.006778z3 + 0.4355z2 − 0.01868z,

H1,1 ≈ −0.01217z3 − 0.7957z2 − 0.01217z,H1,2 ≈ −0.01868z3 + 0.4355z2 − 0.006778z,

H2,0 ≈ 0.009281z3 + 0.1709z2 − 0.02557z, H2,1 ≈ 0.01667z3 − 0.01667z,

H2,2 ≈ 0.02557z3 − 0.1709z2 − 0.009281z,

H̃1,0 ≈ −0.001784z4 − 0.009312z3 + 0.4372z2 − 0.02233z + 0.002724,

H̃1,1 ≈ 0.001221z4 − 0.0195z3 − 0.7764z2 − 0.0195z + 0.001221,

H̃1,2 ≈ 0.002724z4 − 0.02233z3 + 0.4372z2 − 0.009312z − 0.001784,

H̃2,0 ≈ 0.05336z4 + 0.544z3 + 2.818z2 − 0.2624z + 0.08145,

H̃2,1 ≈ −0.03652z4 + 0.4012z3 − 0.4012z + 0.03652,

H̃2,2 ≈ −0.08145z4 + 0.2624z3 − 2.818z2 − 0.544z − 0.05336.

From (2.16), the wavelet filters h1, h2 and h̃1, h̃2 can be obtained as follows:

h1 ≈ [0.032348717, 0.021081228, 0.011739358,−0.75426796, 1.3781973],

h2 ≈ 4[−0.044296947,−0.028867731,−0.016075373, 0.29594173, 0],

h̃1 ≈ [−0.0047182543,−0.0021152562, 0.0030907400, 0.038680809, 0.033766352,

0.016128444,−0.75722871, 1.3447918],

h̃2 ≈ [0.14107656, 0.063246501,−0.092413623,−0.45441064,−0.69483538,

−0.94219467, 4.8815912, 0]/4

(whereas the other half is symmetric/antisymmetric and so skipped). See Fig. 1 for the
graphs of the scaling functions and wavelets in this example.

Example 3.2 Let the lengths of scaling filters be (21, 15). Assume that the scaling
symbols (H0(z), H̃0(z)) have the following form

H0(z) =
(

1+z+z2

3

)7

Q(z),

H̃0(z) =
(

1+z+z2

3

)5

Q̃(z),
(3.2)
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Figure 1: The graphs of φ, ψ1, ψ2(top row, from left to right) and the graphs of φ̃, ψ̃1, ψ̃2(bottom
row, from left to right) in Example 3.1.

where (Q(z), Q̃(z)) are symmetric Laurent polynomials with degree (6, 4). Thus,

h0 ≈ [−0.0066877269,−0.0049799640,−0.0036014177, 0.041559784, 0.024297155,

−0.0036014177,−0.10184906, 0.0418949921, 0.28283863, 0.77648664, 0.87757563],

h̃0 ≈ [0.045518221, 0.014468319,−0.035285806,−0.30664390,−0.15213721, 0.18829749,

1.1081140, 1.2753378].

We can obtain the polyphase decomposition of H0(z) and H̃0(z) are as follows:
[

H0,0 H0,1 H0,2

]
,
[

H̃0,0 H̃0,1 H̃0,2

]
,

where

H0,0 ≈ −0.002079z6 + 0.006497z5 + 0.1633z4 + 0.4483z3 − 0.0588z2 + 0.02399z − 0.003861,

H0,1 ≈ −0.002875z6 + 0.01403z5 + 0.02419z4 + 0.5067z3 + 0.02419z2 + 0.01403z − 0.002875,

H0,2 ≈ −0.003861z6 + 0.02399z5 − 0.0588z4 + 0.4483z3 + 0.1633z2 + 0.006497z − 0.002079,

H̃0,0 ≈ −0.02037z4 + 0.1087z3 + 0.6398z2 − 0.1770z + 0.02628,

H̃0,1 ≈ 0.008353z4 − 0.08784z3 + 0.7363z2 − 0.08784z + 0.008353,

H̃0,2 ≈ 0.02628z4 − 0.1770z3 + 0.6398z2 + 0.1087z − 0.02037.

Using the same method, we derive the polyphase matrices of high-pass filter banks as follows:
[

H1,0 H1,1 H1,2

H2,0 H2,1 H2,2

]
,

[
H̃1,0 H̃1,1 H̃1,2

H̃2,0 H̃2,1 H̃2,2

]
,
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where

H1,0 ≈ 0.0008741z5 − 0.008091z4 + 0.3279z3 − 0.02004z2 + 0.001623z,

H1,1 ≈ 0.001209z5 − 0.01331z4 − 0.5803z3 − 0.01331z2 + 0.001209z,

H1,2 ≈ 0.001623z5 − 0.02004z4 + 0.3279z3 − 0.008091z2 + 0.0008741z,

H2,0 ≈ −0.002057z5 + 0.008632z4 + 0.1253z3 − 0.02783z2 + 0.003821z,

H2,1 ≈ −0.002845z5 + 0.01693z4 − 0.01693z2 + 0.002845z,

H2,2 ≈ −0.003821z5 + 0.02783z4 − 0.1253z3 − 0.008632z2 + 0.002057z,

H̃1,0 ≈ 0.0005821z6 − 0.004607z5 − 0.006087z4 + 0.592z3

−0.03672z2 + 0.006994z − 0.0007509,

H̃1,1 ≈ −0.0002387z6 + 0.003125z5 − 0.02922z4 − 1.05z3

−0.02922z2 + 0.003125z − 0.0002387,

H̃1,2 ≈ −0.0007509z6 + 0.006994z5 − 0.03672z4 + 0.592z3

−0.006087z2 − 0.004607z + 0.0005821,

H̃2,0 ≈ −0.02084z6 + 0.09103z5 + 0.9251z4 + 3.782z3 − 0.2686z2 + 0.1551z − 0.02688,

H̃2,1 ≈ 0.008544z6 − 0.08157z5 + 0.5993z4 − 0.5993z2 + 0.08157z − 0.008544,

H̃2,2 ≈ 0.02688z6 − 0.1551z5 + 0.2686z4 − 3.782z3 − 0.9251z2 − 0.09103z + 0.02084.

From (2.16), the wavelet filters h1, h2 and h̃1, h̃2 can be obtained as follows:

h1 ≈ [−0.0028113764,−0.0020934697,−0.0015139585, 0.034710876, 0.023051661,

0.014014537,−0.56792580, 1.0051351],

h2 ≈ 4[0.0066173484, 0.0049275573, 0.0035635181,−0.048208391,−0.029317970,

−0.014950592, 0.21698428, 0],

h̃1 ≈ [0.0013005736, 0.00041339737,−0.0010082069,−0.012113711,−0.0054124454,

0.0079787011, 0.063598203, 0.050616897, 0.010543400,−1.0253619, 1.8188901],

h̃2 ≈ [−0.046554875,−0.014797828, 0.036089423, 0.26858835, 0.14128600,−0.15767139,

−0.46526530,−1.0379341,−1.6023583, 6.5501164, 0]/4

(whereas the other half is antisymmetric and so skipped). The graphs of the scaling functions
and wavelets are similar to Example 3.1.

References

[1] Daubechies I. Ten lectures on wavelets[M]. Philadelphia: SIAM Pub., 1992.

[2] Cohen A, Daubechies I, Feauveau J C. Biorthogonal bases of compactly supported wavelets[J].

Comm. on Pure and Applied Math., 1992, 45: 485–560.

[3] Chui C K, Lian J A. Construction of compactly supported symmetric and antisymmetric orthonor-

mal wavelets with scale=3[J]. Appl. Comput. Harmon. Anal., 1995, 45: 68–84.



22 Journal of Mathematics Vol. 35

[4] Han Bin. Symmetric orthonormal scaling functions and wavelets with dilation factor 4[J]. Adv.

Comput. Math., 1998, 8: 221–247.

[5] Karoui A. Wavelet bases with a general integer dilation factor d ≥ 2 and better regularity proper-

ties[J]. Appl. Math. Comput., 2009, 214(2): 557–568.

[6] Heller P. Rank M wavelets with N vanishing moments[J]. SIAM J. Math. Anal., 1995, 16(2): 502–

519.

[7] Jiang Qingtang. Symmetric paraunitary matrix extension and parametrization of symmetric orthog-

onal multifilter banks[J]. SIAM J. Matrix Anal. Appl., 2001, 23: 167–186.

[8] Wang Guoqiu. Matrix methods of constructing wavelet filters and discrete hyper-wavelet trans-

forms[J]. Optical Engineering, 2000, 39: 1080–1087.

[9] Wang Guoqiu. Four-bank compactly supported bi-symmetric orthonormal wavelets bases[J]. Optical

Engineering, 2004, 43(10): 2362–2368.

[10] Soardi P M. Biorthogonal M-channel compactly supported wavelets[J]. Constr. Approx., 2000, 16:

283–311.

[11] Jiang Qingtang. Biorthogonal wavelets with 4-fold axial symmetry for quadrilateral surface mul-

tiresolution processing[J]. Adv. Comput. Math., 2011, 34: 127–165.

[12] Han Bin. Analysis and construction of optimal multivariate biorthogonal wavelets with compact

support[J]. SIAM J. Math. Anal., 2000, 31(2): 274–304.

[13] Han Bin. Projectable multivariate refinable functions and biorthogonal wavelets[J]. Appl. Comput.

Harmon. Anal., 2002, 13: 89–102.

[14] Cui Lihong. A method of construction for biorthogonal multiwavelets system with 2r multiplicity[J].

Appl. Math. Comput., 2005, 167: 907–918.

[15] Goh S S, Yap V B. Matrix extension and biorthogonal multiwavelet construction[J]. Linear Algebra

Appl., 1998, 269: 139–157.

[16] Chui C K, Han Bin, Zhang Xiaosheng. A dual-chain approach for bottom-up construction of wavelet

filters with any integer dilation[J]. Appl. Comput. Harmon. Anal., 2012, 33: 204–225.

[17] Han Bin, Zhuang Xiaosheng. Matrix extension with symmetry and its application to symmetric

orthonormal multiwavelets[J]. SIAM J. Math. Anal., 2010, 42(5): 2297–2317.

[18] Zhuang Xiaosheng. Matrix extension with symmetry and construction of biorthogonal multiwavelets

with any integer dilation[J]. Appl. Comput. Harmon. Anal., 2012, 33: 159–181.

具有高消失矩的3-进双正交对称小波的构造

邹庆云1,2 ,王国秋2,曹 前1,2

(1.湖南文理学院数学学院, 湖南常德 415000)

(2.湖南师范大学数学与计算机科学学院, 湖南长沙 410081)

摘要: 本文用矩阵对称扩充来构造了具有高消失矩的3带对称双正交小波. 利用矩阵扩充, 获得了3维

矩阵对称扩充方法和小波构造的算法, 并且, 该算法便于计算机程序化实现; 利用两个实例验证了相关的结

论.
关键词: 双正交性; 对称性; 多相位矩阵; 矩阵扩充; 消失矩
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