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Abstract: In this paper, we investigate the biorthogonal matrix extension problem with sym-
metry and its application to construction of 3-band biorthogonal wavelets with compact supported,
symmetry and high vanishing moments. By using the theory of matrix extension, we obtain the
method of three-dimensional biorthogonal matrix extension with symmetry and a step-by-step al-
gorithm for construction of 3-band biorthogonal wavelets, which is easily implemented by computer
program. Several examples are provided to illustrate the proposed algorithm and results in this
paper.
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1 Introduction

As a generalization of orthogonal wavelets, the biorthogonal wavelets have become a
fundamental tool in many areas of applied mathematics, from signal processing to numerical
analysis [2, 8, 12, 13]. It is well known that 2-band orthogonal wavelet suffers from severe
constraints, such as nontrivial symmetric (linear-phase) 2-band orthogonal wavelet does not
exist [1]. Fortunately, multiwavelets and multiband wavelets with linear phase are designed
as alternatives for more freedom and flexibility [2-5, 9, 10, 12]. (Bi)Orthogonal real-valued
wavelets with symmetry and dilations being greater than two have been reported in [3-7,
9-14]. For example, symmetric compactly supported orthogonal real-valued wavelets with
dilation factor 3 have been obtained by the method of undetermined coefficient and some
special treatments in Chui and Lian [3]. By complicated calculation, only some examples
of compactly supported C! symmetric orthogonal real-valued wavelets with dilation factor
4 have been obtained in [4].
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Under the framework of MRA, the construction of multiwavelet systems having some
desirable properties say, (bi)orthogonality, symmetry, regularity, and so on can be reduced to
two main parts: One firstly constructs dual scaling filters and functions and then the wavelet
filters and wavelets, which should be able to inherit certain properties similar to those of
their scaling filters. Therefore, in order to obtain a wavelet system, the linchpin is to design
the scaling functions with good properties. It is well known that the second part can be
formulated as a matrix extension problem, see [7, 17]. Goh and Yap in [15] studied the
biorthogonal matrix extension problem and presented a step-by-step algorithm for deriving
the extension matrices. Yet neither did they concern about the lengths of the coefficient
supports of the extension matrices, nor did they considered any symmetry constrain on the
extension matrices. In [16], Chui, Han and Zhuang proposed a dual chain approach for this
problem, which first constructs a top-down dual-chain that essentially reduces the lengths
of the coefficient supports of the given pair of vectors to zero and then derives a bottom-up
dual-chain that produces the desired pair of extension matrices. However, the multiwavelet
systems have unsolved questions in many applied areas such as image compression coding.
In view of this, further study for multi-band wavelet systems is still valuable.

In this paper, we construct the 3-band wavelets, which is perfect reconstruction, biorthog-
onal, symmetric/antisymmetric, the high vanishing moments and compactly supported.
First, by designating the length of the filters and the vanishing moments, we construct
the scaling filters with high vanishing moments and symmetry by solving nonlinear equa-
tions with less parameters. Then, we provide a step-by-step algorithm to construct a class

of biorthogonal 3-band wavelets with symmetry.

2 3-Band Scaling Function and Wavelets

In this section, we shall construct the scaling function with desired properties and
propose an algorithm for obtaining symbols of the corresponding 3-band wavelets. First, we
discuss several results that are useful in the following.

As the case of dyadic wavelet, a pair (¢(m),$(x)) of dual scaling functions can be

expressed as the following dilation equations

$(x) = ho(k)p(3z — k) (2.1)

keZ

and

3() = 3 ho(k)3(3z — k), (2.2)

keZ
respectively, with
(6.~ k), 0(. = ) = 8k — ), (2:3)
or equivalently,
> ho(k)ho(k +37) = 30(), (2:4)

k
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where h, g are real number, §(j) denotes the Dirac sequence such that §(j) =1 for j =0
otherwise 6(j) = 0.

The polyphase decomposition of Hy(z) and I:To(z) are defined by Hy ;(2) = % > ox holit+
3k)zF i =0,1,2 and ﬁoﬂ-(z) = % Dok ﬁo(i +3k)2*,i = 0, 1,2, respectively. It is well known
that (2.4) is equivalent to the following equation

Hoo(2)Hoo(z™ ") + Ho1(2)Ho 1 (27 ") 4+ Hoa(2)Hoo(27") = 1. (2.5)

In addition, we assume

> holk) =Y holk) =3. (2.6)

Definition 2.1 The filter h; is symmetric/antisymmetric if and only if
hi(k) =xh;(N—-1—-k)(0<k < N), (2.7)
where N is the length of the filter. Equivalently,
Hi(z) = £z "V H; (271, (2.8)

where H;(z) = >, hi(k)z".

In [18], Zhang provided an effective algorithm to construct compactly supported sym-
metric biorthogonal multiwavelets by given a pair of biorthogonal matrices. Inspired by this
idea, we shall provide a step-by-step algorithm to construct a class of compactly supported
biorthogonal 3-band wavelets with symmetry. First, we need the following theorem.

Theorem 2.2 Suppose that (A(z), E(z)) be a pair of 1 x 3 Laurent polynomial vectors
such that

A()AT (2N =1, (2.9)

and

Ai(2) = Ar(z7Y), Ao(2) = Ax(27Y), Ag(z) = —A5(z7Y),
Ai(z) = A1 (z71), Aa(2) = Ay(27Y), Ag(z) = —As(27Y), (2.10)

where A(z) = (41(2), A2(2), A5(2)), A(2) = (A1(2), Aa(2), A3(2)).
Let their coefficient support be csupp(A4) =
Then A(z), and A(z) can be written as

[—k, k], csupp(A) = [k, k], respectively.

A(z) = (ao, b, C())Z_k + (aq, b1, Cl)Zl_k + -+ (a1, b, —Cl)Zk_l + (ao, by, —co)z

A(2) = (a0, bo, &)z F + (@1, b1, 1) 2 % + -+ + (a1, by, —¢1) 2"

)

L 4 (@, bo, —o) 2.

ER

Assume that ag, by, o, do, b, ¢ are nonzero. Then there exists a pair (u(z), %(z)) of 3 x 3
Laurent polynomial matrices with symmetry such that

(a) (u(z),u(z)) are biorthogonal: u(z)u’(1/z)) = I3 and the coefficient supports of
u(z), u(z) satisfy csupp(u) C [—1, 1] and csupp(u) C [—1, 1], respectively.



No. 1 Construction of biorthogonal 3-band wavelets with symmetry and high vanishing moments 15

(b) u(z), u(z) reduce the lengths of the coefficient support of A(z) and g(z), respectively.

(¢) B(z) = A(2)uz), B(z) = A(2)li2) satisfies (2.9) and (2.10).

Proof Let us recall the theory of symmetric polynomial operations.

Assume that Laurent polynomials fi(z), f2(z) are symmetric about the points Iy, ls,
respectively, and f3(z), fi(z) are antisymmetric about the points I3, l4, respectively. Then

(1) fi1(2)f2(2), f3(2)fa(z) are symmetric about the points I3 + la, I3 + 4, respectively,
and f1(2)f3(2), f2(2)f1(z) are antisymmetric about the points l; + I3, l2 + l4, respectively.

(ii) If I = lg, then fi(z) + f2(z) is symmetric about the point ly; If I3 = Iy, then
f3(2) + fa(z) is antisymmetric about the points 3.

Form (2.9), we have

aoa() + bogo — C()EO =0.

Define
1 50(271 + 1) 2b0 60(271 — 1)
ql(Z) = 27~ b0(271 + 1) —2@0 60(2*1 — 1) 5
odol | Zeo1) 0 (et 41

)
ao(z"1+1)  2by  ao(z )
(

-1 _ 1

_ .1 0

01 (2) =sgn(coCo) —— | bo(z~"+1) —2ap bo(z'—1) |, (211)
2\/@ —co(z7t = 1) 0 —co(27t +1)

where sgn(z) is a sign function such that sgn(z) = 1 for = > 0, sgn(z) = 0 for z = 0 and
sgn(z) = —1 for x < 0.

By direct calculation, we can see that ¢;(z) and ¢i(z) are biorthogonal. It is obvious
that the columns of ¢;(z) are symmetric/antisymmetric about —1/2,0, —1/2, respectively.
Since

(aoa() + bogo + CoEQ)Zk_l(l, 0, 1)

1
(ag, bo, —c0)2"q1(2) = ——=
2/ |eocol

and

1 ~ ~ ~
(a0, bo, o)z "q1(2) = ——=(ao@o + bobo + o)z~ "(1,0,—1),
24/lcocol
we can see that ¢i(z) reduces the length of the coefficient support of A(z) by 1. Note
that Aj(z), Ay(2), A1 (2), As(2) in (2.10) are all symmetric about origin and As(z), As(z)
are both antisymmetric about origin. It is easy to see that the columns of A(z)q;(z) are
symmetric/antisymmetric about —1/2,0, —1/2, respectively. It is similar to A(z)q;(z).

Therefore, without loss of generality, we suppose that

A(2)qi(z) = (do, 0, fo)z=" + -+ + (do, e1, —fo)zlffl’

A7 (2) = (fo,0,do)zF + -+ + (fo, &1, —do) 2P 1.
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Define

@2(2) = ——— 0 2dy 0 ,
2+/|do fol do(z—1) 0 —do(z+1)

1 do(Z + 1) 0 —do(Z — 1)
q2(z) = sgn(do fo) —F— 0 2fo 0 . (2.12)
24/ldo fol folz=1) 0  —fo(z+1)

Clearly, g»(2) and ¢2(z) are biorthogonal, and the columns of ¢3(z) are symmetric/antisymmetric
about 1/2,0,1/2, respectively.
Since (dy, 0, fo)z *q2(2) = %z‘k“(l,& —1) and

(do, €0, — fo)z" " qa(2) = S Z*7(do fo, doeo, do fo),
Vdofol
we have ¢o(2) reduces the length of the coefficient support of A(2)g1(z) by 1. Moreover, the
columns of A(z)q;(2)g2(2) are symmetric/antisymmetric to 0,0, 0, respectively. It is similar
to A(2)d (2)2(2).
In summary, let u(z) = ¢1(2)q2(2) and u(z) = q1(2)g2(2). Then (u(z),u(z)) satisfy (a),
(b) and (c). Moreover, u(z) and u(z) reduce the lengths of the coefficient support of A(z) and

A(z) by 2, respectively. That is, csupp(A(z)u(z)) = [k + 1,k — 1] and csupp(A(2)u(z)) C
[—E + 1,k — 1], respectively.

According to Theorem 2.2, we have a matrix extension algorithm for the polyphase
vectors, see Algorithm 1.

Algorithm 1 (1) Let (Hy(z2), ﬁo(z)) be a pair of dual scaling symbols satisfying (2.4),
(2.6).

(2) Define
N
Ao(2) = 27N (Hy o(2), Ho(2), Hoa(2)) ﬁ 0 v2 o |,
1 0 -1
I
Ao(2) = 2T (o o(2), Hoa(2), Hool2) ) Slova ool e
1 0 -1

where [z] denotes the largest integer less than or equal to x for x € R, N; and N; are the
lengths of the filters hg and hy, respectively. Then (Ag(z), Ag(z)) satisfy (2.9) and (2.10).
(3) Recursively applying (2.11) and (2.12) until

Ap(2) = Ag 1 (2)ug-1(2), Ak (2) = A1 (2)Ux_1(2), (2.14)

and deg(Ax(z)) = 0, deg(Ag(z)) > 0.
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Moreover, Ag(z) = (1,0,0), /TK(Z)) = (1,p1(2),p2(2)) for Laurent polynomials p;(z)
and pa(z) with symmetry. Define

1 0 0 I —pi(2) —p2(2)
ug(z)= | p(z7Y) 1 0 |,ux(z)=1 0 1 0 . (2.15)
pa(z7t) 0 1 0 0 1

By direct calculation, it is obvious that (ux(2),ux(z)) are biorthogonal and Ak (z)uk(z) =
Ak (2)uk(z) = (1,0,0).
(4) Define
U(z) = T (TG (7)o (),

U(z) = uje(z7uje_1 (271) g (271).
The wavelet symbols can be derived by

Hy(2) 1 0 1 1
Hy(2) =[N0 G5 1 0 V20 2 :
| Ha(z) 10 -1 |2
(2.16)
Hy(z) 1 0 1 1
H,(z) = z[N/‘S]U(zg)% 0 v2 0 z ;
| Ha(z) 10 -1 |2

where N = max{Ny, N2 }.
3 Examples

In this section, some examples are given to verify this scheme. we only discuss the
examples of odd lengths 3-band scaling filters.

Example 3.1 Let the lengths of scaling filters be (15,9). Assume that the scaling
symbols (Hy(z), fNIO(z)) have the following form

N
Ho(2) = (257°) Q(2),
~ 48 o
o(z) = (252) Qe),
where (Q(2), @(z)) are symmetric Laurent polynomials with degree (4, 2).

It is obvious that Hy(z) is symmetric if and only if Q(z) is symmetric. By (2.4) and
(2.6), we can obtain the associated scaling filters as follows:

ho = [0.0302708750,0.0197271260,0.0109853080, —0.12261759, 0.011382944, 0.24928687,
0.83207454,0.93777986],
EO ~ [—0.20140256, —0.090291448,0.13193077,1.0694718, 1.1805829]
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(whereas the other half is symmetric and so skipped). Thus, the polyphase decomposition

of Hy(z) and ﬁo(Z) are as follows:
[ Hoo Hoax Hop ] ) [ Hoo Hoy Hop |,
where

Hy o =~ 0.00634237052* + 0.143925842° + 0.480398462> — 0.0707933012 + 0.017476898,
Ho ~ 0.0113894622" + 0.00657194592° + 0.541427452% 4- 0.00657194592 + 0.011389462,
Hp 5 =~ 0.0174768982* — 0.0707933012° + 0.480398462> + 0.143925842 + 0.0063423705,
Hy o =~ 0.07617026822 + 0.61745982z — 0.11627982,

Hy, ~ —0.0521297922% + 0.68160985z — 0.052129792,

Hyo ~ —0.116279822° + 0.61745982z + 0.076170268.

Define

[ 0.43323436(271 +1) —0.34795513  0.43323436(2
¢1(z) = | 0.79629877(z7' +1) 0.51455697  0.79629877(

| —2.0787065(2"" — 1) 0 —2.0787065(z ! + 1

)
) —1.5925975 0.25727848(z~! — 1)
1) 0.86646871  0.17397756(z~' — 1)
1) 0 —0.12026710(z~* + 1)

-1 _ 1)
271 —1)
0.25727848(2"1 + 1
¢1(z) = | 0.17397756/z(2~* +

i —0.12026710(z ! —

We have

Ag(2)q1(2) ~ [0.37597811z + 0.43749957 + 0.43749957/z 4 0.37597811 /22,
—0.0146119952 + 0.042199421 — 0.014611995/z,
—0.31051300z — 1.01344319 + 1.01344319/z + 0.31051300/22],
Ag(2)q1(2) ~ [0.31051300 + 0.31051300,/ 2, —0.80009451, —0.37597811 + 0.37597811/z].

It follows that dy = 0.31051300, fo = 0.37597811 in (2.12). Thus,

Ao(2)q1(2)g2(2) ~ [1.51276001 — 0.017108015z — 0.017108015/ 2,
—0.016078699z + 0.046435260 — 0.016078699) =,
0.70047056z — 0.70047056 /2],

Ay(2)@(2)@(2) ~ [0.68336254,—0.72710963, 0].

Thus, there exist

0.68336254 —0.72710963 0 0.68633245 —0.73026967 0
v=| —0.72710963 —0.68336254 0 |,v'= | —0.73026967 —0.68633245 0 |,
0 0 1 0 0 1
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such that Ag(2)q1(2)g2(2z)v = (1,p1(2), p2(2)), ﬁo(z)al(z)q}(z)v’l = (1,0,0), where

p1(2) = —1.13167449285 + 0.0234269828611z + 0.02342698286112 ",
p2(2) &~ 0.700470556308z — 0.7004705563082 .

Therefore, we can obtain (ug(z),uo(2)) in (2.14) and (u1(z),u1(2)) in (2.15).
We derive the polyphase matrices of high-pass filter banks as follows:

Hyo Hyy Hp EILO 51171 f:h,z
Hyo Hyy Hp ’ Hyoy Hyy Hp ’

where

H, o ~ —0.0067782% + 0.43552* — 0.01868z,

Hy 1~ —0.012172° — 0.79572% — 0.012172, H, 5 ~ —0.018682> + 0.43552% — 0.006778z,
Hj o =~ 0.0092812° + 0.17092% — 0.025572, Hy; ~ 0.016672* — 0.01667z,

Hay 5~ 0.025572% — 0.17092% — 0.0092812z,

Hy o~ —0.001784z* — 0.0093122° + 0.43722% — 0.02233z + 0.002724,

Hy, ~0.0012212* — 0.01952% — 0.77642% — 0.0195z + 0.001221,

Hy o ~ 0.0027242" — 0.022332° + 0.43722% — 0.009312z — 0.001784,

Hy o =~ 0.053362* + 0.5442° + 2.8182% — 0.2624z + 0.08145,

Hyq ~ —0.03652z 4 0.40122° — 0.4012z + 0.03652,

Hy o~ —0.081452* 4 0.26242° — 2.81822 — 0.544z — 0.05336.

From (2.16), the wavelet filters hy, hy and %1,%2 can be obtained as follows:

hi =~ [0.032348717,0.021081228,0.011739358, —0.75426796, 1.3781973],
hy =~ 4[—0.044296947,—0.028867731, —0.016075373,0.29594173, 0],

hi =~ [—0.0047182543, —0.0021152562,0.0030907400, 0.038680809, 0.033766352,
0.016128444, —0.75722871,1.3447918],
hy & [0.14107656,0.063246501, —0.092413623, —0.45441064, —0.69483538,

—0.94219467,4.8815912, 0] /4

(whereas the other half is symmetric/antisymmetric and so skipped). See Fig. 1 for the
graphs of the scaling functions and wavelets in this example.

Example 3.2 Let the lengths of scaling filters be (21,15). Assume that the scaling
symbols (Hy(z), flo(z)) have the following form

Hoz) = (252) Q(2),
fio(z) = (15) " Q2)
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Figure 1: The graphs of ¢, 1,12 (top row, from left to right) and the graphs of ;5, zzl, {/32 (bottom
row, from left to right) in Example 3.1.

where (Q(z), Q(z)) are symmetric Laurent polynomials with degree (6,4). Thus,

ho ~ [—0.0066877269, —0.0049799640, —0.0036014177,0.041559784, 0.024297155,
—0.0036014177, —0.10184906, 0.0418949921, 0.28283863, 077648664, 0.87757563),

ho ~ [0.045518221,0.014468319, —0.035285806, —0.30664390, —0.15213721, 0.18829749,
1.1081140, 1.2753378).

We can obtain the polyphase decomposition of Hy(z) and Hy(z) are as follows:

[Ho,o Hy H0,2:|a|:ﬁ0,0 E’m Ffo,z )

Hp o ~ —0.002079z° + 0.0064972° + 0.1633z" + 0.44832> — 0.05882% 4 0.02399z — 0.003861,
Hy 1 ~ —0.0028752° 4 0.014032° + 0.02419z" + 0.50672% + 0.024192° + 0.01403z — 0.002875,
Hy ~ —0.0038612° + 0.023992° — 0.0588z" + 0.44832" + 0.1633z” + 0.006497z — 0.002079,
Hy o~ —0.020372" + 0.10872° + 0.63982% — 0.1770z + 0.02628,

Hy, ~ 0.008353z* — 0.087842° 4 0.73632% — 0.08784z + 0.008353,

Hy s =~ 0.026282" — 0.17702° + 0.63982° 4 0.1087z — 0.02037.

%

Using the same method, we derive the polyphase matrices of high-pass filter banks as follows:

Hio Hiy Hio 121,0 511,1 -E—’m
Hyo Hyy Hso || Hao Hay Hao |’
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where
Hyo =~ 0.0008741z° — 0.0080912* 4 0.32792° — 0.020042° + 0.001623z,
Hy 0.0012092° — 0.013312* — 0.58032° — 0.0133122 + 0.001209z,
His =~ 0.001623z° —0.020042* + 0.32792° — 0.00809122 + 0.0008741z,
Hyo =~ —0.002057z° + 0.0086322* + 0.12532% — 0.027832% + 0.003821z,
Hy; =~ —0.0028452° +0.016932* — 0.016932% + 0.0028452,
Hy5 =~ —0.0038212° 4 0.027832* — 0.12532° — 0.0086322> + 0.002057z,
Hyo ~ 0.00058212% — 0.0046072° — 0.006087z* 4 0.5922
—0.0367222 + 0.0069942 — 0.0007509,
Hy; ~ —0.000238725 4 0.0031252° — 0.02922z* — 1.052°
—0.029222% + 0.0031252 — 0.0002387,
Hyo =~ —0.00075092° 4 0.0069942° — 0.03672z* + 0.5922°
—0.0060872% — 0.004607z + 0.0005821,
Hyo ~ —0.0208425 4 0.091032° + 0.92512* + 3.7822% — 0.268622 + 0.1551z — 0.02688,
Hy, 0.0085442°% — 0.081572° + 0.59932* — 0.59932* + 0.08157z — 0.008544,
Hyy =~ 0.026882° —0.15512° 4 0.26862* — 3.7822% — 0.92512% — 0.091032 + 0.02084.

From (2.16), the wavelet filters hy, hy and %hﬁg can be obtained as follows:

ha

ha

ha

hs

~
~

Q

Q

Q

[—0.0028113764, —0.0020934697, —0.0015139585, 0.034710876, 0.023051661,
0.014014537, —0.56792580, 1.0051351],

4[0.0066173484,0.0049275573, 0.0035635181, —0.048208391, —0.029317970,
—0.014950592, 0.21698428, 0],

[0.0013005736,0.00041339737, —0.0010082069, —0.012113711, —0.0054124454,
0.0079787011, 0.063598203, 0.050616897,0.010543400, —1.0253619, 1.8188901],
[—0.046554875, —0.014797828, 0.036089423, 0.26858835, 0.14128600, —0.15767139,
—0.46526530, —1.0379341, —1.6023583, 6.5501164, 0] /4

(whereas the other half is antisymmetric and so skipped). The graphs of the scaling functions
and wavelets are similar to Example 3.1.
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