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Abstract: A regularized Newton method is presented in this paper to solve equality con-

strained nonconvex minimization problems. Such a method is characterized by its use of the per-

turbation of the Lagrangian function’s Hessian to deal with the negative curvature. The method

is based on successively solving linear systems for which effective software is readily available. The

linear model of a merit function is employed to attain a sufficient reduction in a local approximation

of the merit function during each iteration. Without the nonsingularity assumption of solution, the

global convergence of the regularized Newton method is established. Some preliminary numerical

results are reported, which show the efficiency of the method.
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1 Introduction

We consider the nonlinear equality constrained optimization problem:

min f(x),
s.t. c(x) = 0,

(1.1)

with continuously differentiable functions: f : Rn → R, and c : Rn → Rm (m ≤ n). Our
interest is in methods for nonconvex minimization problems that ensure global convergence
to first-order optimal points. These methods can be used in contemporary interior-point
methods for general nonlinear optimization.

Recently, there are some progress in convergence analysis of regularized Newton meth-
ods for solving unconstrained programming problems, see [1–3]. Li et al.[1] presented two
regularized Newton methods for convex minimization problems in which the Hessian of ob-
jective function at solutions may be singular. However, the convexity or at least the local
convexity at a local minimizer of the problems cannot be relaxed in their algorithm. Shen
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et al. [4] and Ueda and Yamashita [5] extended the methods to unconstrained nonconvex
minimization problems without the nonsingularity at solutions. The extended regularized
Newton methods use the Armijo’s size rule, and it does not contain unknown constants,
e.g., the Lipschitz constant of ∇f as Polyak’s method. However, as we use the method pro-
posed in [5], the discrepancy between the reformed matrix and the Hessian increases more
significantly if the norm of the gradient gets larger. This discrepancy leads the computation
efficiency to decrease.

Our purposes here are to improve these methods and to generalize them from without
constrained to with equality constrained optimization problem. Such a method is charac-
terized by its use of the perturbation of the Lagrangian function’s Hessian to deal with the
negative curvature. The regularized Newton step is determined by solving a linear system.
The method uses the linear model of a merit function to attain a sufficient reduction in a
local approximation of the merit function.

Here, it should be mentioned that quasi-Newton method and Modified Newton method
for equality constrained optimization. For quasi-Newton method, some assumptions are
some-what restrictive. For example, the condition that the quasi-Newton approximation of
the Lagrangian is uniformly bounded below by a positive constant rules out the case that
the Hessians become ill conditioned, see Theorem 5.6.4 and Theorem 12.1.2 in [6]. However,
in our algorithm, global convergence result is established without the uniformly positive
definite of the Hessians. As to Modified Newton method, the numerical results show that
our method is more robust than Modified Newton method (see Section 4).

To simplify the notation, we denote the gradient of the objective function f by g and
write A for the Jacobian of c respectively, i.e., g(x) = ∇f(x) ∈ Rn, AT (x) = ∇c(x) ∈ Rn×m.
Subscripts k refer to iterations indices and fk is taken to mean f(xk), ck to c(xk) , gk to g(xk)
and Ak to A(xk), etc. For a matrix A ∈ Rn×n, λmin(A) denotes the minimum eigenvalue of
A. Throughout the paper, ‖ · ‖ indicates the Euclidean vector norm.

The paper is organized as follows. In the next section the overall algorithm is developed
in detail. The convergence analysis of our algorithm is finished in Section 3. In Section 4,
we present some numerical results.

2 Development of the Algorithm

By introducing the Lagrangian function L one can derive first-order optimality condi-
tions. The Lagrangian function corresponding to problem (1.1) is L(x, λ) := f(x) + λT c(x),
where λ ∈ Rm are the Lagrange multipliers. If f and c are continuously differentiable, then
the first-order optimality conditions for x∗ to be an optimal solution to problem (1.1) state
that there exist multipliers λ∗ such that (x∗, λ∗) is a solution to the nonlinear system of
equations:

∇L(x, λ) =

[
g(x) + AT (x)λ

c(x)

]
= 0. (2.1)

Suppose that (xk, λk) are estimate of the critical values (x∗, λ∗). Then the Newton
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equations for suitable corrections (dk, δk) to these estimates are simply

[
Hk AT

k

Ak 0

][
dk

δk

]
= −

[
gk + AT

k λk

ck

]
, (2.2)

where

Hk := ∇2
xxLk = ∇2

xxf(xk) +
m∑

i=1

λi
k∇2

xxci(xk)

is the Hessian of the Lagrangian and λi
k represents the ith component of λk. If the constraint

Jacobian Ak has full row rank and Hk is positive definite over the null space of Ak, then a
solution to (2.2) is well defined in this context.

We are interested in the general case, i.e., Hk is not always positive definite over the null
space of Ak. Now, we generalize the technic proposed in [4, 5] for unconstrained optimization
to the equality constrained case. In the equation (2.2), let Hk be modified by

Wk = Hk + [Λk + min(β, ‖gk + AT
k λk‖+ ‖ck‖)]I, (2.3)

where Λk := max{0,−λmin(Hk)} and β > 0 is a fixed constant.
Obviously, Wk is positive definite when ‖gk + AT

k λk‖+ ‖ck‖ 6= 0.
Next, we define the merit function to be Φ(x, µ) := f(x)+µ‖c(x)‖, where µ is a penalty

parameter. We denote Φ′(d, µ) as the directional derivative of the merit function Φ(x, µ) at
x along d, and

mk(d, µ) := fk + gT
k d + µ‖ck + Akd‖,

as the local approximation of Φ(x, µ) about xk. The reduction in the model mk produced
by dk is denoted by

∆mk(dk, µ) := mk(0, µ)−mk(dk, µ)

= −gT
k dk + µ(‖ck‖ − ‖ck + Akdk‖)

= −gT
k dk + µ‖ck‖.

After computing a step dk, we require that the reduction in the model mk satisfies

∆mk(dk, µk) ≥ 1
2
dT

k Wkdk + σµk‖ck‖ (2.4)

for some parameter 0 < σ < 1 and appropriate µk.
A complete statement of the algorithm is given as follows.
Algorithm A:
Let 0 < σ, η, θ, r < 1 and β > 0 be given constants. Initialize x0 ∈ Rn, λ0 ∈ Rm, and

µ0 > 0. Set k = 0.
Step 1 Evaluate functions at xk.
Compute ck, Ak, fk, gk.
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Step 2 Check for termination.
If ‖gk + AT

k λk‖+ ‖ck‖ = 0, stop.
Step 3 Compute search direction.
Compute Wk by using (2.3), and solve the following linear system

[
Wk AT

k

Ak 0

][
d

δ

]
= −

[
gk + AT

k λk

ck

]
. (2.5)

Let (dk, δk) be the solution of (2.5).
Step 4 Update penalty parameter µk.
If the reduction condition (2.4) is satisfied, then go to Step 5. Otherwise, update the

penalty parameter by setting

µk =
1

(1− σ)‖ck‖(gT
k dk +

1
2
dT

k Wkdk) + θ. (2.6)

Step 5 Backtracking line search.
Compute αk with the first number α in sequence {1, r, r2, · · · } satisfying the Armijo

condition:

Φ(xk + αdk, µk) ≤ Φ(xk, µk) + αηΦ′(dk, µk). (2.7)

Step 6 Update.
Set (xk+1, λk+1) = (xk, λk) + αk(dk, δk), µk+1 = µk, k = k + 1, go back to Step 1.

3 Global Convergence

Let us begin our investigation of the well-posedness and global behavior of Algorithm
A by making the following assumptions about the problem and the set of computed iterates.

Assumption 3.1 The sequence {xk} generated by Algorithm A is contained in a convex
set A.

Assumption 3.2 The function f and c and their first and second derivatives are
bounded on A.

Assumption 3.3 The sequences {λk} and {Wk} are bounded.
Assumption 3.4 The constraint Jacobians Ak have full row rank and their small

singular values are bounded below by a positive constant.
Remark 3.1 The positive definiteness of Wk along with Assumption 3.4 ensures that

the equation (2.5) is solvable and has unique solution.
We start by showing that Algorithm A is well defined.
Lemma 3.1 If the penalty parameter µk is chosen as Step 4 of Algorithm A, the

inequality (2.4) is always hold.
Proof If ck = 0, the first block equation in (2.5) and positive definition of Wk imply

∆mk(dk, µk) = −gT
k dk = dT

k Wkdk + dT
k AT

k (λk + δk)

= dT
k Wkdk − cT

k (λk + δk) = dT
k Wkdk ≥ 1

2
dT

k Wkdk.
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In this case, (2.4) is satisfied for the current penalty parameter µk.
If ck 6= 0 and (2.4) is not hold for the current penalty parameter µk, then (2.6) implies

the updated penalty parameter µk satisfies

µk ≥ 1
(1− σ)‖ck‖(gT

k dk +
1
2
dT

k Wkdk),

i.e.,

−gT
k dk + µk‖ck‖ ≥ 1

2
dT

k Wkdk + σµk‖ck‖.
It means that (2.4) is also hold for the updated penalty parameter µk.

Lemma 3.2 The directional derivative of the merit function Φ(x, µ) along a step d

satisfies Φ′(d, µ) = gT d− µ‖c‖.
Proof We can obtain from Taylor expansion that

Φ(x + αd, µ)− Φ(x, µ) = f(x + αd)− f(x) + µ(‖c(x + αd)‖ − ‖c(x)‖
≤ αgT d + K1µα2‖d‖2 + µ(‖c(x) + αAd‖ − ‖c(x)‖)
= αgT d + K1µα2‖d‖2 + µ(‖(1− α)c(x)‖ − ‖c(x)‖)
= α(gT d− µ‖c(x)‖) + K1µα2‖d‖2,

where K1 is some constant. By arguing similarly, we also obtain the following lower bound:

Φ(x + αd, µ)− Φ(x, µ) ≥ α(gT d− µ‖c(x)‖)−K1µα2‖d‖2.

Dividing both sides by α and taking the limit as α → 0 yields the result.
A corollary to above two lemmas is that the step dk computed in Step 3 is a direction

of nonincrease for the merit function Φ(x, µ). This result allows us to show that the Armijo
condition (2.7) is satisfied by some positive αk (see Lemma 3.5), and so Algorithm A is well
defined.

We now investigate the global property of Algorithm A. We consider the decomposition

dk = uk + vk,

where uk, the tangential component, lies in the null apace of Ak and vk, the normal compo-
nent, lies in the range space of AT

k .
The following result shows that the normal step sequence {vk} is bounded.
Lemma 3.3 There exists a constant K2 > 0 independent of the iterates such that

‖vk‖ ≤ K2‖ck‖.

Proof From Akvk = −ck and the fact vk lies in the range space of AT
k , it follows that

vk = AT
k (AkA

T
k )−1Akvk = AT

k (AkA
T
k )−1(−ck),

and so ‖vk‖ ≤ ‖AT
k (AkA

T
k )−1‖ · ‖ck‖.
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The fact that Assumption 3.2 and 3.4 imply that ‖ck‖ and ‖AT
k (AkA

T
k )−1‖ are bounded.

Therefore there exists a constant K2 > 0 independent of the iterates such that

‖AT
k (AkA

T
k )−1‖ ≤ K2,

which implies ‖vk‖ ≤ K2‖ck‖.
The next lemma shows that the penalty parameter µk remains bounded.
Lemma 3.4 The sequence of penalty parameters {µk} is bounded above and there

exists an integer K ≥ 0 such that µk = µK for all k ≥ K.
Proof The penalty parameter is increased during iteration k of Algorithm A only

when (2.6) is invoked. From Lemma 3.1, we know that µk is chosen to satisfy the inequality
(2.4), namely

∆mk(dk, µk)− 1
2
dT

k Wkdk ≥ σµk‖ck‖.
From the equation (2.5), we have

Wkdk + AT
k δk = −(gk + AT

k λk).

Left multiplicating both side by uT
k and using Akuk = 0 yields −gT

k uk = uT
k Wkdk. This,

along with the equation (2.5), implies for some constant K3 > 0 independent of the iterates,

−gT
k dk − 1

2
dT

k Wkdk = −gT
k vk − 1

2
vT

k Wkvk − uT
k Wkvk − gT

k uk − 1
2
uT

k Wkuk

= −gT
k vk − 1

2
vT

k Wkvk +
1
2
uT

k Wkuk

≥ −gT
k vk − 1

2
vT

k Wkvk ≥ −K3‖ck‖,

the last inequality follows from Assumptions 3.2 and 3.3 and Lemma 3.3. Then, we have
shown

∆mk(dk, µk)− 1
2
dT

k Wkdk ≥ (µk −K3)‖ck‖

and so (2.4) is always satisfied for µk ≥ K3
(1−σ)

. Therefore, if µK ≥ K3
(1−σ)

for some K ≥ 0, then
µk = µK for all k ≥ K. The result follows from the above and the fact that when Algorithm
A increases penalty parameter it does so by at least constant θ > 0.

Next, we show that the line search in Step 5 will be successful.
Lemma 3.5 Suppose that there exists a constant ε > 0 such that

‖gk + AT
k λk‖+ ‖ck‖ ≥ ε.

Then, for some constant K4 > 0 independent of ε, αk ≥ αmin(ε), where

αmin(ε) :=
(1− η)r min(β, ε)

2K4µK

and µK is from Lemma 3.4.
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Proof Suppose that the line search fails for some ᾱ > 0, then

Φ(xk + ᾱdk, µk)− Φ(xk, µk) > ᾱηΦ′(dk, µk).

A Taylor expansion of Φ(x, µ) about xk yields for some K4 > 0,

Φ(xk + ᾱdk, µk)− Φ(xk, µk) ≤ ᾱΦ′(dk, µk) + ᾱ2K4µk‖dk‖2.

so (η − 1)Φ′(dk, µk) < ᾱK4µK‖dk‖2, where µK is from Lemma 3.4. From Lemma 3.2, the
inequality (2.4) and the suppose ‖gk + AT

k λk‖+ ‖ck‖ ≥ ε, we have

(η − 1)Φ′(dk, µk) = (1− η)(−gT
k dk + µk‖ck‖) ≥ (1− η)

(
1
2
dT

k Wkdk + σµk‖ck‖
)

≥ 1
2
(1− η)dT

k Wkdk ≥ 1
2
(1− η)min(β, ε)‖dk‖2.

so 1
2
(1−η)min(β, ε)‖dk‖2 < ᾱK4µK‖dk‖2, i.e., ᾱ > (1−η) min(β,ε)

2K4µK
, hence, αmin(ε) satisfies the

Armijo’s rule (2.7).
Now, we show the global convergence property of Algorithm A. First, we present the

convergence of the iterates toward the feasible region of problem (1.1).
Theorem 3.1 Under Assumptions 3.1–3.4, if Algorithm A does not terminate finitely,

then lim
k→∞

‖ck‖ = 0.

Proof Assume that ck does not tend to zero, i.e., lim supk→∞ ‖ck‖ > 0. Let

ε :=
1
2

lim sup
k→∞

‖ck‖,
Iε(k) := {j ∈ {0, 1, 2, · · · }|j ≤ k, ‖cj‖ ≥ ε}.

Then, we have limk→∞ |Iε(k)| = ∞, where |Iε(k)| denotes the number of elements of Iε(k).
From Lemma 3.4, along with Lemma 3.2, inequality (2.4) and definition of Wk in (2.3), for
k ≥ K we obtain

Φ(xK , µK)− Φ(xk+1, µK) =
k∑

j=K

[Φ(xj , µK)− Φ(xj+1, µK)]

≥ −ηαmin(ε)
k∑

j=K

Φ′(xj , µK)

= ηαmin(ε)
k∑

j=K

(−gT
j dj + µK‖cj‖)

≥ ηαmin(ε)
k∑

j=K

(
1
2
dT

j Wjdj + σµK‖cj‖
)

≥ ηαmin(ε)σµK

k∑
j=K

‖cj‖

≥ ηαmin(ε)σµK

∑

j∈Iε(k)

ε

= ηαmin(ε)σµKε|Iε(k)|.
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This contradicts the fact that Assumption 3.2 implies Φ(x, µK) is bounded below. Hence,
we have lim sup

k→∞
‖ck‖ = 0, i.e., lim

k→∞
‖ck‖ = 0.

Second, we present convergent property of the reduced gradient.
Theorem 3.2 Let Assumptions 3.1–3.4 hold. If Algorithm A does not terminate

finitely, then

lim inf
k→∞

‖gk + AT
k λk‖ = 0.

Proof We show it by contradiction. Assume that this is wrong, then possibly after
increasing K there exists ε > 0 with ‖gk + AT

k λk‖ ≥ ε for all k ≥ K.
In the same way as Theorem 3.1, for k ≥ K we have

Φ(xK , µK)− Φ(xk+1, µK) ≥ ηαmin(ε)
k∑

j=K

(
1
2
dT

j Wjdj + σµK‖cj‖
)

≥ 1
2
ηαmin(ε)

k∑
j=K

dT
j Wjdj

≥ 1
2
ηαmin(ε)min(β, ε)

k∑
j=K

‖dk‖2.

The fact that Assumption 3.2 implies Φ(x, µk) is bounded below means lim
k→∞

‖dk‖ = 0.

An expansion of the first block of the optimality conditions (2.1) yields

‖gk+1 + AT
k+1λk+1‖ ≤ ‖gk + AT

k λk + αk(∇2
xxLkdk + AT

k δk)‖+ α2
kβ1(dk, δk),

where

β1(dk, δk) = O(‖dk‖2 + ‖dk‖ · ‖δk‖).

Employing the above inequality, the first block equation in (2.5) and the triangle inequality,
we obtain for k ≥ K,

‖gk+1 + AT
k+1λk+1‖ ≤ ‖gk + AT

k λk + αk(Wkdk + AT
k δk) + αk(∇2

xxLk −Wk)dk‖+ α2
kβ1(dk, δk)

≤ ‖gk + AT
k λk − αk(gk + AT

k λk)‖+ αk‖(∇2
xxLk −Wk)dk‖+ α2

kβ1(dk, δk)

≤ (1− αmin(ε))‖gk + AT
k λk‖+ αkβ2(dk, δk),

where

β2(dk, δk) = O(‖dk‖+ ‖dk‖2 + ‖dk‖ · ‖δk‖),

and the last inequality follows from Assumptions 3.2 and 3.3 and Lemma 3.5. Note that the
bound αmin(ε) ≤ 1 follows from the algorithm′s construction.

The boundedness of {αk}, and the fact that Assumption (3.3) implies δk is bounded in
norm imply that

lim
k→∞

αkβ2(dk, δk) = 0.



No. 1 A regularized Newton method for equality constrained nonconvex optimization 9

So possibly after increasing K for all k ≥ K we have

αkβ2(dk, δk) <
1
2
αmin(ε)ε

and

‖gk+1 + AT
k+1λk+1‖ ≤ (1− αmin(ε))‖gk + AT

k λk‖+
1
2
αmin(ε)ε

≤ ‖gk + AT
k λk‖ − 1

2
αmin(ε)ε.

Therefore, {‖gk +AT
k λk‖} decreases monotonically by at least a constant amount for k ≥ K,

so we eventually find ‖gk + AT
k λk‖ < ε for some k ≥ K. This contradicts ‖gk + AT

k λk‖ ≥ ε

for all k ≥ K. Hence, our assumption was wrong and lim inf
k→∞

‖gk + AT
k λk‖ = 0 is hold.

4 Numerical Results

In this section, we give some numerical experiments to show the success of Algorithm
A. A Matlab code was written corresponding to this implementation. We also compare the
performance of Algorithm A with Modified Newton method. All examples are chosen from
[7]. The parameter setting and termination criteria about the implementation are described
as follows.

(1) The parameter setting. The algorithm parameters were set as follows:

σ = 0.2, η = 10−8, θ = 10−4, r = 0.5,

β = 0.5, λ0 = (1, 1, · · · , 1) ∈ Rm, µ0 = 1.

(2) Termination criteria. Algorithm A stops if

‖gk + AT
k λk‖+ ‖ck‖ ≤ 10−6.

In Algorithm A, the left most eigenvalue of Hk is computed via Matlab’s eig func-
tion. Then, we compute the solution to (2.5) by factorizing the coefficient matrix using the
Doolittle method.

In modified Newton method, modification is made prior to the step computation, by
adding multiplies of the identity matrix to Hk, in order to create a strictly convex subproblem
during each iteration (see Appendix B in [8]). The modification of Hk is as follows:

set pk = 10−4;
while min(eig(Hk)) <= 0,
Hk = Hk + pk ∗ I;
pk = 10 ∗ pk;
end.
Wk = Hk.

In table 1, which presents results of the numerical experiments, we use the following
notation:
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Table 1: Detailed results for test problems
Problem n m Algorithm A MN method

Iter Final-f Prec Iter Final-f Prec

HS6 2 1 17 1.6452e-015 1.0767e-007 10 1.1615e-017 4.7427e-009
HS7 2 1 8 -1.7321 4.5455e-013 8 -1.7321 4.5455e-013
HS8 2 2 5 -1 3.3887e-015 5 -1 1.9606e-015
HS9 2 1 11 -0.5000 3.6001e-011 3 -0.5000 2.0854e-007
HS26 3 1 18 2.1913e-012 7.6669e-007 20 3.4840e-011 8.7814e-007
HS27 3 1 11 0.0400 9.9904e-011 39 0.0400 5.8248e-008
HS28 3 1 8 1.5892e-022 1.1550e-011 1 0 0
HS39 4 2 8 -1.0000 7.6740e-012 8 -1.0000 1.4825e-010
HS40 4 3 11 -0.2500 7.1297e-007 44 -0.2500 9.7529e-007
HS42 4 2 5 13.8579 3.3191e-011 4 13.8579 9.4286e-009
HS46 5 2 20 1.7025e-011 6.6584e-007 20 1.4784e-009 7.7951e-007
HS47 5 3 13 -1.4716e-011 2.7142e-007 Fail
HS48 5 2 5 9.8627e-014 5.4573e-007 2 8.0178e-017 2.0555e-008
HS49 5 2 21 3.7996e-010 3.2629e-007 17 3.2131e-009 6.2142e-007
HS50 5 3 11 3.1323e-021 1.0125e-010 9 7.2661e-019 3.2518e-009
HS51 5 3 5 2.4961e-016 3.0791e-008 1 1.4791e-031 1.4594e-015
HS52 5 3 5 5.3266 6.4326e-013 1 5.3266 4.2328e-015
HS56 7 4 139 -3.4560 8.5290e-007 Fail
HS61 3 2 7 -143.6461 4.1959e-009 7 -143.6461 1.4535e-012
HS77 5 2 12 0.2415 2.5399e-007 13 0.2415 1.3893e-007
HS78 5 3 33 -2.9197 8.6101e-007 53 -2.9197 9.9956e-007
HS79 5 3 7 0.0788 1.0003e-008 5 0.0788 3.4568e-007

n: the number of variables,
m: the number of constraints,
MN method: Modified Newton method,
Iter: the number of outer iterations,
Final-f : the final value of the objective function,
Prec: the final value of ‖gk + AT

k λk‖+ ‖ck‖ used in the termination criteria,
Fail: the algorithm does not terminate properly.
All the equality constrained problems proposed in [7], a total of 22, were selected. For

the problem 61, because the full row rank condition described in Assumption 3.4 does not
hold at the starting point, we select another point x0 = (0, 0, 1)T as the initial point. For
each problem that be successfully solved by both of the methods, the number of outer
iteration of these methods are similar. But, there are 2 problems where Algorithm A solved
while modified Newton method could not solve. For problems 47 and 56, using modified
Newton method, the outer iteration limit of 1000 can be reached before an iterate satisfies
the termination criteria. Table 1 shows that Algorithm A is clearly superior to modified
Newton method. The numerical results illustrate that our regularized Newton method for
equality constrained nonconvex optimization is effective and more robust than modified
Newton method.

5 Conclusions

A new regularized Newton method is proposed for solving equality constrained non-
convex optimizations. This method is characterized by its use of the perturbation of the
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Lagrangian function’s Hessian to deal with the negative curvature. The global convergence
properties are proved nuder reasonable assumptions. Numerical experiments are conducted
to compare this method with the classical modified Newton method and results show that
new method is competitive. Our approach can be extended to generally constrained prob-
lems as our methodology is applied to the equality constrained barrier subproblems arising
in an interior point method.
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等式约束非凸优化问题的修正牛顿算法

张新华

(南京农业大学工学院,江苏南京 210031)

摘要: 本文设计了一个新的求解等式约束非凸优化问题的修正牛顿算法. 利用修正的拉格朗日函数,

通过求解线性方程组获得搜索方向, 利用价值函数的线性近似模型确定步长．在没有非奇异性假设的条件

下, 证明了算法的全局收敛性. 数值结果表明, 算法是有效的.
关键词: 约束优化; 非凸优化问题; 修正牛顿法; 全局收敛
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