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Abstract: In this paper, we first introduce a class of new categories AYDE as a disjoint
union of family of categories {4YD"(,3)}(a,5)cc- Then we mainly show that the category
{aYD"(a, B)}(a,p)cc forms a braided T-category if and only if there is a map 2 such that (4, H, 2)
is a G-double structure, generalizing the main constructions by Panaite and Staic (2005). Finally,
when H is finite-dimensional we construct a quasitriangular T-coalgebra {A#H" (e, )} (a,8)cc)
such that {AyDH(a, B)}(a,p)ec is isomorphic to the representation category of the quasitriangular
T-coalgebra {A#H" (e, 8)}(a,8)cc-
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1 Introduction

For a group m, Turaev [12] introduced the notion of a braided m-monoidal category,
here called Turaev braided mw-category, and showed that such a category gives rise to a 3-
dimensional homotopy quantum field theory. Kirillov [5] found that such Turaev braided
m-categories also provide a suitable mathematical tool to describe the orbifold models which
arise in the study of conformal field theories. Virelizier [15] used Turaev braided m-category
to construct Hennings-type invariants of flat m-bundles over complements of links in the
3-sphere. We note that a Turaev braided w-category is a braided monoidal category when 7
is trivial.

Starting from the category of Yetter-Drinfeld modules, Panaite and Staic [6] constructed
a Turaev braided category over certain group 7, generalizing the work of [7]. Turaev braided

m-categories were further investigated by Panaite and Staic in [6], by Zunino [17]. In the
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present paper, let G be the semi-direct product of the opposite group 7° of a group =« by
m and A an H-bicomodule algebra. We first introduce a class of new categories AyDg as a
disjoint union of family of categories { A YD (a, B)}a,p)cc- Then we mainly show that the
category {4 VD (a, B)}(a,p)cc forms a braided T-category, generalizing the main construc-
tions by Panaite and Staic [6]. Finally, when H is finite-dimensional we construct a quasi-
triangular T-coalgebra { A#H*(at, 8)}(a.p)cc, such that {4 YD (, 8)}(a.p)ce is isomorphic
to the representation category of the quasitriangular T-coalgebra {A#H* (o, 8) }(a,)cc-

The paper is organized as follows. In Section 3, let G be the semi-direct product of the
opposite group 7° of a group 7 by m and A an H-bicomodule algebra, we first introduce a
class of new categories 4 VD& as a disjoint union of family of categories { 4D (a, B)}a.prec
and give necessary and sufficient conditions making AyDg into a braided T-category.

In Section 4, when H is finite-dimensional, as an appliction, we construct a quasitri-
angular T-coalgebra { A#H* (o, #) }(a,8)cc, such that {AyDH(a,ﬁ)}(a,ﬁ)eG is isomorphic to
the representation category of the quasitriangular T-coalgebra {A#H* (o, 8) }(a,8)cc-

2 Preliminaries

Throughout the paper, we let k be a fixed field and denote by ® the the tensor product
over k. For the comultiplication A in a coalgebra C, we use the Sweedler-Heyneman’s
notation [12]:

Alc) =1 ®co

for any ¢ € C. For a left C-comodule (M, p') and a right C-comodule (N, p"), we write
! _ o) —
p(m) =m1) @m) and p"(n) =mne) @na),

respectively, for all m € M and n € N. For a Hopf algebra A, we always denote by Aut(A)
the group of Hopf automorphisms of A.

2.1 Braided T-Categories

Let m be a group with the unit e. We recall that a Turaev m-category (see [12]) is a
monoidal category C which consists of the following data.

A family of subcategories {C, }acr such that C is a disjoint union of this family and such
that U @ V € Cyg, for any o, 8 € 7, if the U € C, and V' € Csz. Here the subcategory C, is
called the ath component of C.

A group homomorphism ¢ : 7 — aut(C), 5 — g, the conjugation, (where aut(C) is
the group of invertible strict tensor functors from C to itself) such that ¢(Cs) = Cgap—1 for
any «, 8 € m. Here the functors ¢z are called conjugation isomorphisms.

We will use the left index notation in [12] or [17]: given § € G and an object V e Cg,
the functor ¢z will be denoted by V(-) or #(-). We use the notation V(-) for #~'(-). Then
we have Vidy = idvy and V(go f) = YgoVf. We remark that since the conjugation
¢ : G — aut(C) is a group homomorphism, for any V,W € C, we have V®W (.) = V(W (.))
and 1(:) = V(V(-)) = V(Y(-)) = ide and that since, for any V € C, the functor V(-) is strict,
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we have V(f ® g) =V f @ Vg, for any morphism f and g in C, and V1 = 1. And we will use
C(U,V) for the set of morphisms (or arrows) from U to V in C.
Recall from [12] that a braided crossed category is a crossed category C endowed with

a braiding, i.e., with a family of isomorphisms
T={my €CUV,("V)®@U)}luvec
satisfying the following conditions:

for any arrow f € C,(U,U’) witha € 7,9 € C(V, V'), we have

(“g)® f) oty =10y 0 (f ®9); (2.1)
for all U, V,W € C, we have

Tugv,w = avev,uy © (Tuvwegy) © a(}}vw,v o (ty ® Tv,w) ° av,v,w, (2.2)
TU VW = a;‘l/’UW’U o (Lwvy ®Tuw)oavyuw o (Tuy @ tw) o Cl[_/}v,wa (2.3)
for any U,V € C,a € 7,00 (Tu,v) = T ()00 (V)- (2.4)

In this paper, we use terminology as in Zunino [17]; for the subject of Turaev categories, see
also the original paper of Turaev [12]. If C is a braided crossed category then we call C a

braided T-category.
2.2 T-Coalgebras

Let 7 be a group with unit e. Recall from Turaev [12] that a m-coalgebra is a family
of k-spaces C' = {C,}aer together with a family of k-linear maps A = {A, 3 : Cop —
Co ® Cata,per (called the comultiplication ) and a k-linear map € : C. — k (called the

counit), such that A is coassociative in the sense that,

(Aaﬂ ® ich)AaﬂJ\ = (ide &® Aﬂ,)\)Aa,ﬁ)\ for any «, ﬂ, A€ T, (25)
(Z'dcu (%9 €)Aa)e =1idg, = (8 ® Z'dcu)Ae)a for all o € 7. (26)

We use the Sweedler-like notation (see [14]) for a comultiplication in the following way:
for any o, 8 € m and ¢ € Cg, we write A, g(c) = c1,0) @ C(2,3)-

A T-coalgebra is a m-coalgebra H = ({H,}, A, €) together with a family of k-linear maps
S ={S, : Hy, — H,-1},cr (called the antipode), and a family of algebra isomorphisms
¢ ={¢p: Hy — Hpap-1}a,per (called the crossing) such that

each H, is an algebra with multiplication m, and unit 1, € H,, (2.7)
forall o, €em, A,pande: H, — k are algebra maps, (2.8)
for v € T, Mo (Sa-1 @ idpy, )Au-1.4 = €ly = My (idy, ® Sq-1)Aq o1, (2.9)
forall a, B,y €m, (95 @ ¥p)Aany = Dpas—1,pap—1¥s; (2.10)
forall Bem, eps=c¢, (2.11)
forall o, B €™, Yaps = Pas- (2.12)
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2.3 Twisted Semi-Direct Square of Groups

Let G, L be two groups and G act on the left the group L by automorphisms. Then
L x G is a group with the multiplication

Lo, g) = (Ug>1),99),

which is called a semi-direct product of L by G and denoted by L x G. A group = is a
semi-direct product of L by G if and only if L is a normal subgroup of 7, G is a subgroup
ofm, LNG =1, and m = LG (see [16]).

Let m be a group and let L = 7°P, the opposite group of a group w. Consider the adjoint
action of 7 on L by defining: v > o = yay~! for all ,y € . Then we have the semi-direct
product 7 x 7. The opposite group (7% x 7)° of the group 7° X 7 is denoted by G with
the multiplication, for all a, 5, A,y € 7:

(o, B)#(N, ) = (vay '\ 78), (2.13)

which was called a twisted semi-direct square of group 7 (see [16]). Moreover 7 is a subgroup

of G and (o, 3)" ' = (B~ ta™15,571).
3 A Braided 7T-Category AyDg

Definition 3.1 Let H be a Hopf algebra with bijective antipode S and 7 a group with
the unit e. Let A be an H-bicomodule algebra and (,,(s € Aut(H). An (o, 3)-quantum
Yetter-Drinfeld module is a vector space M, such that M is a left A-module (with notation
a®m > a-m) and right H-comodule (with notation M — M ® H,m +— m) ® m()) with

the following compatibility condition:

pla-m) = aq) - m) @ Cplan)mla(S™ (o)) (3.1)

for all a € A and m € M. We denote by 4D (a, ) the category of (o, 3)-quantum
Yetter-Drinfeld module, morphisms being A-linear and H-colinear maps.

Remark 3.2 Let H be a Hopf algebra with bijective antipode S and (,, (s € Aut(H).
Let A be an H-bicomodule algebra. Then A ® H is an object in YD (o, §) with the

following structures:
a-(b@h)=ab@h,  pb@h)="bo)® h1 @ (s(ba))haCa(ST (b-1)))

for all a,b € A and h € H. Furthermore, if A and H are bialgebras, then it is easy to check
k is an object in 4YD (a, 3) with structures: a -z = e4(a)z and p(z) = = ® 1y, for all
x € k if and only if the following condition holds:

eaa)ly = eala)lala-1))Cs(S™ (aw))) (3.2)

for all a € A.
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Thus we have a Turaev G-category AyDg as a disjoint union of family of categories
{uIDE(, B)}(apyec over the family of the left-right (a, 8)-Yetter-Drinfeld modules, with
(o, 0) € G.

Example 3.3 (1) Let H be a Hopf algebra with a bijective antipode and ¢ : 71 —
Aut(H) a group homomorphism. Then category zYD"(a, () is actually the category of
(o, B)-Yetter-Drinfel’d modules studied in Panaite and Staic [6].

(2) For ¢, = s = idy, we have g YD (id,id) = pYD", the usual quantum Yetter-
Drinfel’d module category in the sense of Caenepeel et al. [2].

(3) For ¢, = S?,(s = idy, the compatibility condition (2.1) becomes

(a-m)e) ® (a-m)ay = aq) - me) @ a1ym)S(aw),

hence y YD (S2,id) is the usual anti-quantum Yetter-Drinfeld module category in the sense
of Caenepeel et al. [2].
The following notion is a generalization of one in Panaite and Staic in [6].
Proposition 3.4 For any M € ,YD"(a,3) and N € ,YD"(v,6), then we have
M @ N € 2D (6ad~1y,60) with structures:

a>(m®n)=ay-m®ay-n,

pPugN(m@n) = (m@n)o @ (Mm@ n)ay =mo) @ no) @ (s(ma))as—1 (1))

if and only if the following condition holds:

az(0) ® a10) ® Csp(az1))$s(€)Csa (S~ (az(-1)))Csa(@1(1)) a1 (d) Csas—14 (S (a1(-1))))
= a2 ® ao) @ Csp(a))Cs(¢)Csas—1 (d)Csas-14(S ™ (az1)). (3.3)

Proof It is easy to see that M ® N is a left A-module and M ® N is a right H-comodule.

We compute the compatibility condition:

puen(a> (m@n))

= (a2 -m)() ® (a1 - n)(0) ® Gs5((az - M) (1)) Goas—1 (a1 - 1) (1))

= Qz(0) - M) ® a1(0) - N(0) ® Cé(Cﬂ(%(l))m(l)Ca(S_l(a2(—1))))
Csas—1(Cs(ar1)) ()¢, (S™Hay-1y)))

= ax0) M) @ a0) 10) ® Caa(az1))C(Mm1))Ga (5™ (az(-1)))Gsalar(r))
Coao—1 (1)) Gsas—17 (S (a1(-1)))

=" a2 M) @ o) o) ® Gs(aw))Cs(ma))Gas—1 (n(1))Gas-14 (5™ (a-1))

= aq) - (M®@n)) ® Gslam)(m @ n)u)Csas—1,(S™" (a-1))
and this shows that M @ N € YD (5ad~'y,73).

Conversely, by Remark 3.2, since AQ H € AyDH(a, B),weletm=1®candn=1®d
for any ¢,d € H and easily get eq. (3.3).
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The following proposition is straightforward.
Proposition 3.5 For any N € 4YD"(v,6) and (o, 3) € G. Define (“)N = N as

vector space, with structures

adn = E,-15(a) - n,

p(?’L) = Nyo) ® Ny = N(o) ® Cﬁ—15a5_1(n(1)).
Then we have that (“AN € ,YD((a, B)#(v, 0)#(c, )~1) if and only if the following
condition holds:

a15(a)(0) ® Co-15a5-1(C5(Ea18(a) (1))l (ST (Ea15(a)(-1))))
= &a1p(aq)) © Ca-168(a(-1))p-1505-1(6)a-15a5-145-15(S " (a(1)))- (3.4)

Furthermore, let M € 42D (a, §) and (u,v) € G. Then we have
(@A # V) Ny = (@B (V) ) (M@ N) ="M e WYIN,

Proof We only show the first claim as follows.
By Remark 3.2, A® H € 4YD"(v,6) for any (v,8) € G. For any d € H, then we have

(a#(1®d))j0) @ (a#(10d))1) = ap#(1@d) 0 @¢s-155(a-1)) (1@d)1)Cs-1605-116-15(S " (a(1))),

which implies eq. (3.4).
Conversely, one has
(a#n)o) @ (adn)p)
= (a—18(a) - n)(0) ® (g-1505-1((Sa-15(a) - 1))
= &a15(a)0) - 1) @ (15051 (G (Ea-18(a) (—1))n 1) G (ST (Ea15(a) (- 1))
w a18(a0) 1) @ Ca-155(a(-1))Ep-1505-1 (1)) Cp-15a5-175-15(S ™ (aq)))
= a®nio) @ Ca-15(a-1)nCs-1sas-146-18(S T (a)))-

Now define a group homomorphism ¢ : G — Aut(,YD3), (a, §) — P(a,8)s aS
@(a,ﬁ) : AyDH('Ya 5) — AyDH((aa ﬁ)#(’% 5)#(0[, ﬁ)_1)7 @a,,@(N) = (aﬂ)Na

and the functor ¢, 5) acts as identity on morphisms.
Consider now a map 2 : H® H — A® A with a twisted convolution inverse Z, that

means that
e@(hg ® gﬂ%(hl ®gl) = €(h)1A [029] 5(9)1A

for all h,g € H. Sometimes, we write 2(h ® g) := 2'(h® g) ® 2*(h® g) for all h,g € H.
For any M € ,YD"(a,3), N € 4YD"(v,6) and P € ,YD"(u,v). Define a map as
follows:
CM,N 1M®N—>JWN®M,
C]\/[}N(m & 7?,) = Q(n(l) ® (o1 (m(l)))(n(o) ® m(o)). (35)
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In what follows, our main aim is to give some necessary and sufficient conditions on
2 such that the ¢y, y defines a braiding on Ay:/)g. For this, we will find conditions under

which ¢y v is both A-linear and H-colinear, and the following conditions hold:

cmen,p = (cu, np ®@idy) o (idy ® cn,p), (3.6)

cunep = (idvy ® ey p) o (cu,y @ idp). (3.7)

Furthermore, if M € 4YD"(a,) and N € YD (v,8), then we want to show the

following;:
Cu) M, ()N = CM,N (3-8)
holds, for any (u,v) € G.
In order to approach to our main result we need some lemmas.

Lemma 3.6 For any M € AyDH(a,ﬁ) and N € AyDH(fy,é). Then ¢y n is A-linear

if and only if the following condition is satisfied:

2(Cs(ar(-1))d¢, (S (a11))) @ Ca1(Cplaz—1))cCa (S (a21)))) (a1(0) @ as(o))
= [(la-15 ® 1)A“P(a)] 2(d ® (4-1(c)) (3.9)

foralla € A and ¢,d € H.
Proof If ¢y n is A-linear then it is easy to get

a-cun(m@n) = [(§a-15 @ DA“P(a)]2(n1) @ Ca-1(m()))(n0) @ m(0))
and

cun(a-(m®n))
= 2(¢s(ar—1))nwmé (S ar)) © Ca1(Calaz—1))maCa (S~ (az))))

(a1(0) - 7(0) @ @2(0) - MY0))-

Considering these equations and taking M = N =A®Candm=1®candn=1®d
for all ¢,d € H. Then we can get eq. (3.9).

Conversely, by the above formulas it is easy to see that cj; n is A-linear.

Lemma 3.7 For any M € 42D (a,3) and N € ,YD"(,6). Then ¢y is H-colinear

if and only if the following condition is satisfied:

2(dy ® (a-1(c1)) ® C5(c2)Csas-1(d2) = «Ql(dz ® Ca-1(c2))(0) @ 92((12 ® Ca-1(c2))(0)
®Csas-1(C5(2" (d2 @ (a1 (c2))(~1))dr G (STH( 2 (d2 © (a1 (c2)) (1))
®Csas-17a-1 (Ca (22 (d2 @ Ca1(c2))(1))c1(a(STH(22(d2 @ Ca-1(c2)) 1)) (3.10)

for all ¢,d € H.
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and

Proof If ¢y is H-colinear then we do the following calculations:

pocyn(m®en)

(2'(ng) ® Ca-1(m@y)) - 100y ® (2%(n(1) ® Ca-1(mq1))) - m0)) 0)

®(Ca(2H (n(1) @ Ca1(Mm@))) - 10)) (1)) (Gsas- 1701 (L2 (n(1) @ @™ - my)) - M) (1))
(2'(n() ® Ca-1(m))) - 1(0))0) @ (Z22(n01) ® Ca1(m(1))) - M(0)) (0)

®(Csas-1 (2 (n01) ® Ca1(M(1))) - 2(0)) (1)) (a5~ 1701 (22 (1) ® Ca-1 (M(1))) - M) ) (1))
(2 ()2 ® Cam1 (Mm1)2)) 0) - 10)) @ (22 (n(1)2 @ Cam1 (M1)2))o - M)
®C5a571(ga(e@l(n(1)2 ® Ca-1(m)2))(—1))na)éy (S 71(31( 12 ® Ca-1(Mm@)2)) 1))
®Csas-1ya-1(Ca(22(n(1)2 ® (o l(mu 2)) (1) 16a(STHL2 ()2 © Camr(M(1)2)) (1))

(em,ny ®id) o p(m @ n) = ey n(Mm @ n)y @ (M@ n)qy
= 2(nan ® G-1(man))(ne @ mey) @ G(may2)Csas—1 (n(1)2)-

Now welet M = N=A® H and take m=1®cand n=1®d for all ¢,d € H. Then

we can get eq. (3.10).

Conversely, by the above formulas it is easy to see that cj; n is H-colinear.
Lemma 3.8 For any M € ,YD"(a,8), N € ,YD"(v,6) and P € ,YD" (i, v). Then

eq. (3.6) holds if and only if the following condition is satisfied, with % = 2

(i © A) (1 ® s (Gras () = (€115 © D (G5-105(2" (b ® Gyos () )
th{S_lV'yu_luv_lé(S_l("@l(hQ ® CW_I (d))(l))) ® C(X_l (C))]
(2'(ha ® ¢-1(d)) ) ® 1) ® 22(ha ® ¢,-1(d)) (3.11)

for all ¢,d,h € H.

and

Proof If eq. (3.6) holds. Then we compute as follows:

(car, vp ®idy) o (idy @ enp)(m @ n @ p)
= Z(2'(p) @ G-1(n)) - P©0) (1) @ Ca-1 (M) (L (p01) @ &-1(n1))) - Poy) 0)
®@m) @ 2%(pa) ® ¢-1(n(1))) - 1(0))
[(ffy 16 @ DU (Cs-105(2 (P(1)2 © 1 (n(1))) (=1)) P16 1wy 15
(5712 (P2 ® &1 (n))))) ® Ca1(mq1)))]
(2 (py2 ® G- (1)) (0) - Poy @ (o)) @ 22 (p1ye @ G2 (n(y)))

CM®N’p(m ®n ®p)
= 2(pa) ® (-15a-15-1((M @ n) 1)) (P0) ® (M @ n)(0))
= 2(pa) ® -1 (Ga-1(m1))n(1))) (P0) @ (M(0) @ N(0)))-
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Take M = N=P=AQHand m=1®c¢,andn =1Q®d, and p = 1® h for all
¢,d,h € H. Then we obtain eq. (3.11).

Conversely, the proof is straightforward. We omit the details.

Lemma 3.9 Forany M € 4YD"(a,8), N € 42YD"(v,6) and P € ,YD"(u,v). Then
eq. (3.7) holds if and only if the following condition is satisfied, with Z = 2:

(AP @ id) 2(Cu(dCyu-1 (1)) @ Ca-1(c) = 21 (A ® Ca-1(c2)) @ % (h® Cas
(2(d ® Ca-1(¢o(2(d @ Ca-1(0)) (1) )manlal(S™
(2%(d® Ca-1(c) )1 ® 2%(d ® Ca-1(0)) o) (3.12)

for all ¢,d,h € H.
Proof If eq.(3.7) holds, then we have

(tdvn @ carp) © (epu,ny ®idp)(Mm @ n @ p)

= 2 (nw) @ (a1 (ma))) 10y @ % () © Ca1[(2°(n(1) @ Cam1 (1)) - m0)) (1))
(P0) ® (2%(n) ® Ca1(mq1))) - M(0))(0)

= 2 (na) @ (a1 (may)) - ne) @ % (pa) ® Ca-1(2%(na) © G (Cs(2% (nqy
®Ca-1(m(1))) (-1))m1)16a(ST)(L2(n0) @ Ca-1(m@1))) (1) (Po) © 22 (nqy
&Ca-1(m))) o) - m(0))

and

cuner(m@n @ p) = 2(Cu(na))uvu-1 (P1) @ Ca-1(m))) (7o) @ Py @ My0)).

Take M = N=P=AQHandm=1®c,andn=1®d,and p=1® h for all ¢,d,h € H.
Then we obtain eq. (3.12).

Conversely, it is straightforward.

Lemma 3.10 For any M € ,YD"(a,8) , N € ,YD"(v,8) and P € 4D (u,v).
Then eq. (3.8) holds if and only if the following condition holds:

(fu*lu ® §M*1V)0@<<u*16#5*1 (d) & gufl,ua’l (C)) = Q(d ® (Oz’l (C)) (313>

for all ¢,d € H.

Proof Straightforward.

Therefore, we can summarize our results as follows.

Theorem 3.11 Let A and H be bialgebras and n a group with the unit e. Let & :
m — Aut(A) and ¢ : # — Aut(H) be group homomorphisms. Let A be an H-bicomodule
algebra and 2 : H® H — A ® A a twisted convolution invertible map. Then the family of
maps given by eq. (3.5) defines a braiding on the category 4YDg if and only if equations
(3.2)—(3.4) and (3.9)—(3.13) are satisfied.
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Definition 3.12 Let A and H be bialgebras and 7 a group with the unit e. Let
E:m — Aut(A) and ¢ : # — Aut(H) be group homomorphisms. Let A be an H-
bicomodule algebra. We say that a G-double structure is (A, H) together with a linear map
2:H®H — A® A such that the following conditions hold:

(1) eala)ly = ealaq))ala-1))¢s(S™ (aw)));

(2)  as0) ® a1(0) ® Csp(a2(1))Cs(€)Goa (S (an(-1)))Csa(@101)) Coas—1 (d) Csas-1 (ST (a1(-1))))
= a(0)2 ® a1 @ C55(a(1))C5(6)Csas-1 (d)Csas—14 (S~ (a-1));

(3) &a-15(a)(0) ® Cp-16a5-1(Cs(Ea15(a) (—1)) Gy (ST (Ea15(a)(-1))))
= Ea-15(a0)) ® Co-155(a(-1))§5-1506-1 (€)Cp-15a5-175-15 (S~ (aq)));

(4) 2(¢(ai-1))dd, (S arm))) © Cam1(Cplas-1))eCa(S™ (a2)))) (a1(0) ® as(o))
= [({a-15 ® 1)A“P(a)] 2(d ® (a-1(c));

(5) 2(di ® Ca1(c1)) @ C5(€2)Csa0-1 (d2) = 21 (d2 @ Ca-1(c2))(0) @ 22(d2 ® (a1 (c2))(0)
®Csas-1(Cs(21(d2 @ Ca-1(c2)) (-1))dr &y (STH( 2 (d2 @ (a1 (c2)) 1))
®Csa5-17a—1 (Ca (D (da © Co1(c2))(—1))1Ca(STH(22(d2 ® Ca-1(c2))(1))));

(6) (id ®@ A“P)2(h @ (;-1(Csa-1(c)d) = [(§4-15 @ VX (Cs5-106(2" (ha @ C-1(d)) (—1)
hiCs-tum-tpy-15(STH (2 (he @ -1 (d)) 1)) © Ca1(0))]
(2 (P2 ® G-1(d)) ) ® 1) ® 2 (p1j2 ® G4-1(d));

(7) (AP ®@id)2(Cu(dCyp-1(€))) @ Ca-1(c) = 2Hd @ (om1(c2)) @ U (h ® (o
(2%(d ® Ca-1(¢s(2%(d @ Ca1(€)) (1)) manCa (ST
(2%(d® Ca1(0) 1)) (1 ® 22(d @ (o1 (m1)) (0) - M(0))5

(8) (§u10 ®E&u1,)2(C15u5-1(d) @ (u1pa-1(c)) = 2(d ® (a-1(0));

(9) There exists a map: Z : H ® H — A ® A such that
s B(ewd) =R+ D d) = elc)e(d)] @ 1.

Proposition 3.13 Let M € AyDH(a,ﬁ) and assume that M is finite-dimensional.

Then
(1) If the following condition holds:

S™Hag0)) () ® Cs-1(a(=1))¢a-1a-1S(Cs(S ™ (@) (=1)) e S
(5 a@)@)))¢s-ra-15(5 (a-n)) = 8 (a) ® (g-1a-15(h) (3.14)

for all a € A and h € H, then M* is an object in M € ,YD* (3 'a~'3,57!), with the

module action and comodule coaction as follows:
(a e f)(m) = f(S7'(h)-m),
p(f)(m) = foy(m) ® fuy = f(m)) @ (g-1a-15(m))

forac A, f € M* and m € M.
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(2) The maps by : k — M @ M*, by (1) = >, e; ® ¢' (where e; and €’ are dual bases
in M and M*) and dy; : M* @ M — k, dy/(f ® m) = f(m) are morphisms in 4YDg and

we have
(idM ® dM)(bM ® ZdM) = idyy; (dM & ZdM*)(ZdM* ® bM) = idp~.
Proof (1) For all a € A and f € M*, we compute

(a() ® foy)(m) @ (-1 (a-1)) f11)Co-1a-15(5 " (a(-1)))
= fin(87(aq)) -m) @ g1 (a-n) fylp-ra-15(S ™ (a(-1)))
= (87 Haw) - m)©) ® (g1 (ac-1))¢s-1a-1S((S7 (a) - m)1))Cs-1a-15(S 7 (a(-1)))
= (87 aw)©) - m©)) ® (-1 (ac-1))Cp-1a-15(Ca(S ™ ag)) (-1)ma)
CaSTH(S™Ha0) (1)) 1a-15(S 7 (a(-1)))
F(S7Ha) - m@) ® Cg-1a-1S(mq))
= (aef)o(m)@(aef)q

and as required.

(2) Straightforward.

Similarly, one has the following result.

Proposition 3.14 Let M € AyDH(a,ﬁ) and assume that M is finite dimensional.
Then

(1) If the following condition holds:

S(a)) ) ® a1 (a-1))¢a-1a-15"(Cs(S(ag)) (-1))hCaS ™"
((S(a@)m)))¢s-1a-15(S(a-1))) = S(a) @ (g-10-15"1(h) (3.15)

for all a € A and h € H, then *M is an object in M € ,YD"(3 a3, "), with the
module action and comodule coaction as follows:

(a e f)(m)= f(S(h)-m),
p(f)(m) = fo)(m) @ fay = f(m) © Cg-1a-15" (mq))

forac A, f € M* and m € M.

(2) The maps bys : k — *M @ M, by (1) =Y e’ ®@e; (where e; and e’ are dual bases in
M and *M) and dpy : M @ *M — k, dyy(m ® f) = f(m) are morphisms in AyDg and we
have

(dayr @ idpr)(idyy @ bpy) = idpg;  (id < @ dag) (b @ id < pp) = id - 5.

Now, we consider AyDg; fd> the subcategory of AyDg consisting of finite dimensional
objects, then by Proposition 3.13 and Proposition 3.14, we get
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Theorem 3.15 If equations (3.14) and (3.15) hold then AyDg;fd is a braided T-
category with left and right dualities being given as in Proposition 3.13 and Proposition

3.14, respectively.

4 Application

In this section we construct a quasitriangular T-coalgebra {A#H*(c, 8)}(a,p)cc, such
that { AYDY (o, 3)}(a,8)cc is isomorphic to the representation category of the quasitriangular
T-coalgebra {A#H*(a, 3)}(a,p)cc-

Theorem 4.1 Let G be a twisted semi-direct square group and 2: HQH — AQA
a linear map. Let £ : 1 — Aut(A) and ¢ : 1 — Aut(H) be group homomorphisms. Let
(A, H,2) be a G-double structure and assume H is finite-dimensional with a dual basis
(e;); € H and (e'); € H*. Then A#H* = {A#H*(a,8)}(a,p)cc is a T-coalgebra with the
following structures:

The multiplication m,,3) and the unit of A#H*(c, 3) are given, for any a,b € A and
h*,g* € H*, by

(a#h™)(b#g") =Y (0", Ca(b1)eiCa (ST (bay)))aboy#e'y”, (4.1)

(3

Lagh=(a,p) = 1a ®emn. (4.2)
The comultiplication and the counit of A#H* are given by
Aa,p),(rv.0) T A#FH (o, B)#(7,0)) — A#H" (o, B) @ A#H(v,0),

Aa,p),(.0) (a#h™) = (as# 51 (hT) @ (a1#C56-15-1(h3)), (4.3)
EA#H* - A#H* — k, EA#H* (a#h*) = (EA & 1H)((I#h*) (44)

foralla € A and h* € H*.
The antipode SA#H™ = {SA#1 - A#H*(a, B) — A#H*((a, 8) 1) }(a.p)ec is given by

(a,8)
Sty (@07 =D (Grrama (5" (1), o1 (57 @) n)ess
(p-1a-1(STH (ST @) wy)) > ST @) #e'. (4.5)

The crossing ¢ = {gpg”?) s A#H*(7,0) — A#H*((o, B)# (7, 0)#(a, 3) 1)} is defined
by
Pl (077) = €1 ()H 515051 (B): (4.6)
Proof First, the multiplication is associative and the unit is 14, ® eg.
Second, it is straightforward to check that ¢ satisfies equation (2.10), (2.11) and (2.12),

i.e., the following conditions hold:

—

¢ is multiplicative, i.e., ©(a,8) © ©(y,6) = P(a,8)#(y,5), I particular 90(3’5)) = id.
@ is compatible with A, i.e.,

(@B)#(1.0) _ ( (aB) o (a,8)
A (1) (0B i) =1, () o8 ()1 O Pl = (0 @ Plan) © D(a,p), (4,8)-
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 is compatible with €, i.e., € o w%i’eﬁ)) = ¢ for any (a, 5) € G.

Third, the coassociativity follows directly from the coassociativity of the comultiplica-
tion of A and H* and the fact p(a,) © ©(y,6) = P(a,8)#(+.6)- It is easy to check that €44+ is
multiplicative.

Fourth, we show that A, g (.5) is an algebra morphism, i.e., axiom (2.8) is satisfied.

For any a,b € A and h*, g* € H*, we do calculations as follows:

Aap),v.0) [(a#th”) (b#g")]
= (0, e O (ayb)ott GG (€1d)1) © (apb)i#Cia-151 ((1d7)2)
= (W, Gop(b-1))ejeiCoas—17 (ST (b)) az (b)) 2#C5-1 (' g7) @ ar(bo))1#C5a-15-1(€'95)
= (", Gp(b-1))Cs(€5)Csas1(€:)Cas—14 (ST (b)) az (b))
#6 (51 (g7) @ ar(boy)1#e Go15-1(95)
= {G-1(h"), Ca((b2)(-1))e;Ca(STH((D2) (1)) Cas1 (Cs((Dr) (—1y)ealy (STH((B1) 1))
az (b2)(0)#€’ (51 (d7) © ax (by) oy #e' Ga15-1(95)
= (a#t G () (b2 #G-1(97) @ (a1 #5151 (h3) (1 #C50-15-1(d5)
= A(ap) (@#h") Ay 5 (b#97).

Finally, for all («, 8) € G, we have to check axiom (2.9). We now prove one of them as

follows:

Mop)=t © (Séfﬁ?* ® id(aﬁVl) © A(a,ﬁ),(aﬂ)—l (a#h*)
= S (ot (@ # 1 o15(h3)
- Z<C§71a71<58*(h>1k)’Cﬁ*l(S71<a2)(*1))€i<ﬁ*1a71[3(371(Sil(a2>(1)))>

K2

(S (a2) o #€" ) (ar1#C5-14-15(h3)
S (a5 (), G (S az) (cn))eiCa-ranip(S TS az) )

.3

(€', ¢a1(ar—1))ejCa-1a-15(S " (a1(1))) (S ™ (a2) (0)a1(0)#€* (-10-15(h5))
= ) (1018 (h1), Co1 (S a2)ar) —1))eila-1a-1(ST (S Ha)ar)w))))

,]

(S (ag)ar) o #e’Ch10-15(h3))
= ea(@)C5-14-155"(M1)C5-14-15(h3))
= lapCagn-(a#h”),

and the other one can be verified in the similar way.

Theorem 4.2 Let G be a twisted semi-direct square group and and 2 : H @ H —
A® A alinear map. Let £ : 1 — Aut(A) and ¢ : 71 — Aut(H) be group homomorphisms.
Let (A, H, 2) be a G-double structure and H a finite-dimensional with a dual basis (e;); € H
and (¢’); € H*. Then the category 4YD' is isomorphic to the category Rep(A#H*) of
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representations of A# H* as braided T-categories. Moreover, A#H* = {A#H*(, 3)}(a.p)cc

is a quasitriangular T-coalgebra with the quasitriangular structure given by

R =A{Rap) 0
= ) e H#2 (e @ Cale)) ® I H#D(e; @ Caley)) € ABH (o, B) @ A#H*(7,0)}

0.

for all o, 3,7,6 € .
Proof Since (A, H,2) is a G-double structure we have the braided T-category 4V Dg&.

The braiding on AyDg translates into a braiding on the category Rep(A#H*) of represen-
tations of A#H*. But this means that A#H* = {A#H"(«, 3)}(a,p)cc is a quasitriangular
T-coalgebra . The invertible map 2 : H ® H — A ® A satisfying the conditions (4), (5),
(6) and (7) in Definition 3.12 induces a map

Dk — A#H* (a, §) @ A#H* (7, 9).

Then 2(1) is just the corresponding R(q.g),(v,5) € A#H* (o, 3) @ A#H*(7,0).
In this case, we have the braiding on the category Rep(A#H*):

eun M@ N = YN@M, m@n i [1(5), 0,8 R, e @ m)

for any M € agn+(ap)# and N € gpp(y,5) A .
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