# THE CONSTRUCTION OF BRAIDED T－CATEGORIES 

GUO Shuang－jian ${ }^{1}$ ，DONG Li－hong ${ }^{2}$<br>（1．School of Mathematics and Statistics，Guizhou University of Finance and Economics， Guiyang 550025，China）<br>（2．College of Mathematics and Information Science，Henan Normal University， Xinxiang 453007，China）


#### Abstract

In this paper，we first introduce a class of new categories ${ }_{A} \mathcal{Y D}_{G}^{H}$ as a disjoint union of family of categories $\left\{{ }_{A} \mathcal{Y D}^{H}(\alpha, \beta)\right\}_{(\alpha, \beta) \in G}$ ．Then we mainly show that the category $\left\{_{A} \mathcal{Y D}^{H}(\alpha, \beta)\right\}_{(\alpha, \beta) \in G}$ forms a braided $T$－category if and only if there is a map $\mathscr{Q}$ such that $(A, H, \mathscr{Q})$ is a $G$－double structure，generalizing the main constructions by Panaite and Staic（2005）．Finally， when $H$ is finite－dimensional we construct a quasitriangular $T$－coalgebra $\left\{A \# H^{*}(\alpha, \beta)\right\}_{(\alpha, \beta) \in G}$ ， such that $\left\{{ }_{A} \mathcal{Y D}^{H}(\alpha, \beta)\right\}_{(\alpha, \beta) \in G}$ is isomorphic to the representation category of the quasitriangular $T$－coalgebra $\left\{A \# H^{*}(\alpha, \beta)\right\}_{(\alpha, \beta) \in G}$ ．


Keywords：quantum Yetter－Drinfeld module；braided $T$－category；quasitriangular struc－ ture

2010 MR Subject Classification： 16 T 05
Document code：A Article ID：0255－7797（2014）06－1101－15

## 1 Introduction

For a group $\pi$ ，Turaev［12］introduced the notion of a braided $\pi$－monoidal category， here called Turaev braided $\pi$－category，and showed that such a category gives rise to a 3－ dimensional homotopy quantum field theory．Kirillov［5］found that such Turaev braided $\pi$－categories also provide a suitable mathematical tool to describe the orbifold models which arise in the study of conformal field theories．Virelizier［15］used Turaev braided $\pi$－category to construct Hennings－type invariants of flat $\pi$－bundles over complements of links in the 3 －sphere．We note that a Turaev braided $\pi$－category is a braided monoidal category when $\pi$ is trivial．

Starting from the category of Yetter－Drinfeld modules，Panaite and Staic［6］constructed a Turaev braided category over certain group $\pi$ ，generalizing the work of［7］．Turaev braided $\pi$－categories were further investigated by Panaite and Staic in［6］，by Zunino［17］．In the

[^0]present paper, let $G$ be the semi-direct product of the opposite group $\pi^{o p}$ of a group $\pi$ by $\pi$ and $A$ an $H$-bicomodule algebra. We first introduce a class of new categories ${ }_{A} \mathcal{Y} \mathcal{D}_{G}^{H}$ as a disjoint union of family of categories $\left\{{ }_{A} \mathcal{Y D}^{H}(\alpha, \beta)\right\}_{(\alpha, \beta) \in G}$. Then we mainly show that the category $\left\{{ }_{A} \mathcal{Y D}^{H}(\alpha, \beta)\right\}_{(\alpha, \beta) \in G}$ forms a braided $T$-category, generalizing the main constructions by Panaite and Staic [6]. Finally, when $H$ is finite-dimensional we construct a quasitriangular $T$-coalgebra $\left\{A \# H^{*}(\alpha, \beta)\right\}_{(\alpha, \beta) \in G}$, such that $\left\{{ }_{A} \mathcal{Y D}^{H}(\alpha, \beta)\right\}_{(\alpha, \beta) \in G}$ is isomorphic to the representation category of the quasitriangular $T$-coalgebra $\left\{A \# H^{*}(\alpha, \beta)\right\}_{(\alpha, \beta) \in G}$.

The paper is organized as follows. In Section 3, let $G$ be the semi-direct product of the opposite group $\pi^{o p}$ of a group $\pi$ by $\pi$ and $A$ an $H$-bicomodule algebra, we first introduce a class of new categories ${ }_{A} \mathcal{Y} \mathcal{D}_{G}^{H}$ as a disjoint union of family of categories $\left\{{ }_{A} \mathcal{Y D}^{H}(\alpha, \beta)\right\}_{(\alpha, \beta) \in G}$ and give necessary and sufficient conditions making ${ }_{A} \mathcal{Y} \mathcal{D}_{G}^{H}$ into a braided $T$-category.

In Section 4, when $H$ is finite-dimensional, as an appliction, we construct a quasitriangular $T$-coalgebra $\left\{A \# H^{*}(\alpha, \beta)\right\}_{(\alpha, \beta) \in G}$, such that $\left\{{ }_{A} \mathcal{Y}^{H}(\alpha, \beta)\right\}_{(\alpha, \beta) \in G}$ is isomorphic to the representation category of the quasitriangular $T$-coalgebra $\left\{A \# H^{*}(\alpha, \beta)\right\}_{(\alpha, \beta) \in G}$.

## 2 Preliminaries

Throughout the paper, we let $\mathbb{k}$ be a fixed field and denote by $\otimes$ the the tensor product over $\mathbb{k}$. For the comultiplication $\Delta$ in a coalgebra $C$, we use the Sweedler-Heyneman's notation [12]:

$$
\Delta(c)=c_{1} \otimes c_{2}
$$

for any $c \in C$. For a left $C$-comodule $\left(M, \rho^{l}\right)$ and a right $C$-comodule $\left(N, \rho^{r}\right)$, we write

$$
\rho^{l}(m)=m_{(-1)} \otimes m_{(0)} \quad \text { and } \quad \rho^{r}(n)=n_{(0)} \otimes n_{(1)}
$$

respectively, for all $m \in M$ and $n \in N$. For a Hopf algebra $A$, we always denote by $A u t(A)$ the group of Hopf automorphisms of $A$.

### 2.1 Braided T-Categories

Let $\pi$ be a group with the unit $e$. We recall that a Turaev $\pi$-category (see [12]) is a monoidal category $\mathcal{C}$ which consists of the following data.

A family of subcategories $\left\{\mathcal{C}_{\alpha}\right\}_{\alpha \in \pi}$ such that $\mathcal{C}$ is a disjoint union of this family and such that $U \otimes V \in \mathcal{C}_{\alpha \beta}$, for any $\alpha, \beta \in \pi$, if the $U \in \mathcal{C}_{\alpha}$ and $V \in \mathcal{C}_{\beta}$. Here the subcategory $\mathcal{C}_{\alpha}$ is called the $\alpha$ th component of $\mathcal{C}$.

A group homomorphism $\varphi: \pi \longrightarrow \operatorname{aut}(\mathcal{C}), \beta \mapsto \varphi_{\beta}$, the conjugation, (where $\operatorname{aut}(\mathcal{C})$ is the group of invertible strict tensor functors from $\mathcal{C}$ to itself) such that $\varphi_{\beta}\left(\mathcal{C}_{\alpha}\right)=\mathcal{C}_{\beta \alpha \beta^{-1}}$ for any $\alpha, \beta \in \pi$. Here the functors $\varphi_{\beta}$ are called conjugation isomorphisms.

We will use the left index notation in [12] or [17]: given $\beta \in G$ and an object $V \in \mathcal{C}_{\beta}$, the functor $\varphi_{\beta}$ will be denoted by ${ }^{V}(\cdot)$ or ${ }^{\beta}(\cdot)$. We use the notation ${ }^{\bar{V}}(\cdot)$ for ${ }^{\beta^{-1}}(\cdot)$. Then we have ${ }^{V} i d_{U}=i d_{V}$ and ${ }^{V}(g \circ f)={ }^{V} g \circ{ }^{V} f$. We remark that since the conjugation $\varphi: G \longrightarrow \operatorname{aut}(\mathcal{C})$ is a group homomorphism, for any $V, W \in \mathcal{C}$, we have ${ }^{V \otimes W}(\cdot)={ }^{V}\left({ }^{W}(\cdot)\right)$ and ${ }^{1}(\cdot)={ }^{V}\left(\overline{V^{\prime}}(\cdot)\right)=\overline{{ }^{V}}\left({ }^{V}(\cdot)\right)=i d_{\mathcal{C}}$ and that since, for any $V \in \mathcal{C}$, the functor ${ }^{V}(\cdot)$ is strict,
we have ${ }^{V}(f \otimes g)={ }^{V} f \otimes{ }^{V} g$, for any morphism $f$ and $g$ in $\mathcal{C}$, and ${ }^{V} 1=1$. And we will use $\mathcal{C}(U, V)$ for the set of morphisms (or arrows) from $U$ to $V$ in $\mathcal{C}$.

Recall from [12] that a braided crossed category is a crossed category $\mathcal{C}$ endowed with a braiding, i.e., with a family of isomorphisms

$$
\tau=\left\{\tau_{U, V} \in \mathcal{C}\left(U \otimes V,\left({ }^{U} V\right) \otimes U\right)\right\}_{U, V \in \mathcal{C}}
$$

satisfying the following conditions:
for any arrow $f \in \mathcal{C}_{\alpha}\left(U, U^{\prime}\right)$ with $\alpha \in \pi, g \in \mathcal{C}\left(V, V^{\prime}\right)$, we have

$$
\begin{equation*}
\left(\left({ }^{\alpha} g\right) \otimes f\right) \circ \tau_{U, V}=\tau_{U^{\prime} V^{\prime}} \circ(f \otimes g) \tag{2.1}
\end{equation*}
$$

for all $U, V, W \in \mathcal{C}$, we have

$$
\begin{align*}
& \quad \tau_{U \otimes V, W}=a_{U \otimes V}^{W, U, V}  \tag{2.2}\\
& \qquad \tau_{U, V \otimes W}=a_{U}^{-1} \circ\left(\tau_{U, V}{ }_{V}{ }_{W}{ }_{W, U}\right) \circ a_{U, V}^{-1} \circ\left(\iota_{(U, V)} \otimes\left(\iota_{U} \otimes \tau_{U, W}\right) \circ a_{U}{ }_{V, U, W}\right) \circ\left(\tau_{U, V} \otimes \iota_{U, V, W}\right) \circ a_{U, V, W}^{-1},  \tag{2.3}\\
& \text { for any } U, V \in \mathcal{C}, \alpha \in \pi, \varphi_{\alpha}\left(\tau_{U, V}\right)=\tau_{\varphi_{\alpha}(U), \varphi_{\alpha}(V)} \tag{2.4}
\end{align*}
$$

In this paper, we use terminology as in Zunino [17]; for the subject of Turaev categories, see also the original paper of Turaev [12]. If $\mathcal{C}$ is a braided crossed category then we call $\mathcal{C}$ a braided $T$-category.

### 2.2 T-Coalgebras

Let $\pi$ be a group with unit $e$. Recall from Turaev [12] that a $\pi$-coalgebra is a family of $k$-spaces $C=\left\{C_{\alpha}\right\}_{\alpha \in \pi}$ together with a family of $k$-linear maps $\Delta=\left\{\Delta_{\alpha, \beta}: C_{\alpha \beta} \longrightarrow\right.$ $\left.C_{\alpha} \otimes C_{\beta}\right\}_{\alpha, \beta \in \pi}$ (called the comultiplication) and a $k$-linear map $\varepsilon: C_{e} \longrightarrow \mathbb{k}$ (called the counit), such that $\Delta$ is coassociative in the sense that,

$$
\begin{align*}
& \left(\Delta_{\alpha, \beta} \otimes i d_{C_{\lambda}}\right) \Delta_{\alpha \beta, \lambda}=\left(i d_{C_{\alpha}} \otimes \Delta_{\beta, \lambda}\right) \Delta_{\alpha, \beta \lambda} \text { for any } \alpha, \beta, \lambda \in \pi,  \tag{2.5}\\
& \left(i d_{C_{\alpha}} \otimes \varepsilon\right) \Delta_{\alpha, e}=i d_{C_{\alpha}}=\left(\varepsilon \otimes i d_{C_{\alpha}}\right) \Delta_{e, \alpha} \text { for all } \alpha \in \pi . \tag{2.6}
\end{align*}
$$

We use the Sweedler-like notation (see [14]) for a comultiplication in the following way: for any $\alpha, \beta \in \pi$ and $c \in C_{\alpha \beta}$, we write $\Delta_{\alpha, \beta}(c)=c_{(1, \alpha)} \otimes c_{(2, \beta)}$.

A $T$-coalgebra is a $\pi$-coalgebra $H=\left(\left\{H_{\alpha}\right\}, \Delta, \varepsilon\right)$ together with a family of $k$-linear maps $S=\left\{S_{\alpha}: H_{\alpha} \longrightarrow H_{\alpha^{-1}}\right\}_{\alpha \in \pi}$ (called the antipode), and a family of algebra isomorphisms $\varphi=\left\{\varphi_{\beta}: H_{\alpha} \longrightarrow H_{\beta \alpha \beta^{-1}}\right\}_{\alpha, \beta \in \pi}$ (called the crossing) such that
each $H_{\alpha}$ is an algebra with multiplication $m_{\alpha}$ and unit $1_{\alpha} \in H_{\alpha}$,
for all $\alpha, \beta \in \pi, \quad \Delta_{\alpha, \beta}$ and $\varepsilon: H_{e} \longrightarrow k$ are algebra maps,
for $\alpha \in \pi, m_{\alpha}\left(S_{\alpha^{-1}} \otimes i d_{H_{\alpha}}\right) \Delta_{\alpha^{-1}, \alpha}=\varepsilon 1_{\alpha}=m_{\alpha}\left(i d_{H_{\alpha}} \otimes S_{\alpha^{-1}}\right) \Delta_{\alpha, \alpha^{-1}}$,
for all $\alpha, \beta, \gamma \in \pi, \quad\left(\varphi_{\beta} \otimes \varphi_{\beta}\right) \Delta_{\alpha, \gamma}=\Delta_{\beta \alpha \beta^{-1}, \beta \alpha \beta^{-1}} \varphi_{\beta}$,
for all $\beta \in \pi, \quad \varepsilon \varphi_{\beta}=\varepsilon$,
for all $\alpha, \beta \in \pi, \quad \varphi_{\alpha} \varphi_{\beta}=\varphi_{\alpha \beta}$.

### 2.3 Twisted Semi-Direct Square of Groups

Let $G, L$ be two groups and $G$ act on the left the group $L$ by automorphisms. Then $L \times G$ is a group with the multiplication

$$
(l, g)\left(l^{\prime}, g^{\prime}\right)=\left(l\left(g \triangleright l^{\prime}\right), g g^{\prime}\right)
$$

which is called a semi-direct product of $L$ by $G$ and denoted by $L \ltimes G$. A group $\pi$ is a semi-direct product of $L$ by $G$ if and only if $L$ is a normal subgroup of $\pi, G$ is a subgroup of $\pi, L \cap G=1$, and $\pi=L G$ (see [16]).

Let $\pi$ be a group and let $L=\pi^{o p}$, the opposite group of a group $\pi$. Consider the adjoint action of $\pi$ on $L$ by defining: $\gamma \triangleright \alpha=\gamma \alpha \gamma^{-1}$ for all $\alpha, \gamma \in \pi$. Then we have the semi-direct product $\pi^{o p} \ltimes \pi$. The opposite group $\left(\pi^{o p} \ltimes \pi\right)^{o p}$ of the group $\pi^{o p} \ltimes \pi$ is denoted by $G$ with the multiplication, for all $\alpha, \beta, \lambda, \gamma \in \pi$ :

$$
\begin{equation*}
(\alpha, \beta) \#(\lambda, \gamma)=\left(\gamma \alpha \gamma^{-1} \lambda, \gamma \beta\right) \tag{2.13}
\end{equation*}
$$

which was called a twisted semi-direct square of group $\pi$ (see [16]). Moreover $\pi$ is a subgroup of $G$ and $(\alpha, \beta)^{-1}=\left(\beta^{-1} \alpha^{-1} \beta, \beta^{-1}\right)$.

## 3 A Braided $T$-Category ${ }_{A} \mathcal{Y} \mathcal{D}_{G}^{H}$

Definition 3.1 Let $H$ be a Hopf algebra with bijective antipode $S$ and $\pi$ a group with the unit $e$. Let $A$ be an $H$-bicomodule algebra and $\zeta_{\alpha}, \zeta_{\beta} \in A u t(H)$. An $(\alpha, \beta)$-quantum Yetter-Drinfeld module is a vector space $M$, such that $M$ is a left $A$-module (with notation $a \otimes m \mapsto a \cdot m$ ) and right $H$-comodule (with notation $M \rightarrow M \otimes H, m \mapsto m_{(0)} \otimes m_{(1)}$ ) with the following compatibility condition:

$$
\begin{equation*}
\rho(a \cdot m)=a_{(0)} \cdot m_{(0)} \otimes \zeta_{\beta}\left(a_{(1)}\right) m_{(1)} \zeta_{\alpha}\left(S^{-1}\left(a_{(-1)}\right)\right) \tag{3.1}
\end{equation*}
$$

for all $a \in A$ and $m \in M$. We denote by ${ }_{A} \mathcal{Y D}^{H}(\alpha, \beta)$ the category of $(\alpha, \beta)$-quantum Yetter-Drinfeld module, morphisms being $A$-linear and $H$-colinear maps.

Remark 3.2 Let $H$ be a Hopf algebra with bijective antipode $S$ and $\zeta_{\alpha}, \zeta_{\beta} \in A u t(H)$. Let $A$ be an $H$-bicomodule algebra. Then $A \otimes H$ is an object in ${ }_{A} \mathcal{Y} \mathcal{D}^{H}(\alpha, \beta)$ with the following structures:

$$
a \cdot(b \otimes h)=a b \otimes h, \quad \rho(b \otimes h)=b_{(0)} \otimes h_{1} \otimes \zeta_{\beta}\left(b_{(1)}\right) h_{2} \zeta_{\alpha}\left(S^{-1}\left(b_{(-1)}\right)\right)
$$

for all $a, b \in A$ and $h \in H$. Furthermore, if $A$ and $H$ are bialgebras, then it is easy to check $\mathbb{k}$ is an object in ${ }_{A} \mathcal{Y D}^{H}(\alpha, \beta)$ with structures: $a \cdot x=\varepsilon_{A}(a) x$ and $\rho(x)=x \otimes 1_{H}$, for all $x \in \mathbb{k}$ if and only if the following condition holds:

$$
\begin{equation*}
\varepsilon_{A}(a) 1_{H}=\varepsilon_{A}\left(a_{(0)}\right) \zeta_{\alpha}\left(a_{(-1)}\right) \zeta_{\beta}\left(S^{-1}\left(a_{(1)}\right)\right) \tag{3.2}
\end{equation*}
$$

for all $a \in A$.

Thus we have a Turaev $G$-category ${ }_{A} \mathcal{Y} \mathcal{D}_{G}^{H}$ as a disjoint union of family of categories $\left\{{ }_{H} \mathcal{V}_{G}^{H}(\alpha, \beta)\right\}_{(\alpha, \beta) \in G}$ over the family of the left-right $(\alpha, \beta)$-Yetter-Drinfeld modules, with $(\alpha, \beta) \in G$.

Example 3.3 (1) Let $H$ be a Hopf algebra with a bijective antipode and $\zeta: \pi \longrightarrow$ $\operatorname{Aut}(H)$ a group homomorphism. Then category ${ }_{H} \mathcal{Y D}^{H}(\alpha, \beta)$ is actually the category of $(\alpha, \beta)$-Yetter-Drinfel'd modules studied in Panaite and Staic [6].
(2) For $\zeta_{\alpha}=\zeta_{\beta}=i d_{H}$, we have ${ }_{H} \mathcal{Y D}^{H}(i d, i d)={ }_{H} \mathcal{Y D}^{H}$, the usual quantum YetterDrinfel'd module category in the sense of Caenepeel et al. [2].
(3) For $\zeta_{\alpha}=S^{2}, \zeta_{\beta}=i d_{H}$, the compatibility condition (2.1) becomes

$$
(a \cdot m)_{(0)} \otimes(a \cdot m)_{(1)}=a_{(0)} \cdot m_{(0)} \otimes a_{(-1)} m_{(1)} S\left(a_{(1)}\right),
$$

hence ${ }_{H} \mathcal{Y D}^{H}\left(S^{2}, i d\right)$ is the usual anti-quantum Yetter-Drinfeld module category in the sense of Caenepeel et al. [2].

The following notion is a generalization of one in Panaite and Staic in [6].
Proposition 3.4 For any $M \in{ }_{A} \mathcal{Y D}^{H}(\alpha, \beta)$ and $N \in{ }_{A} \mathcal{Y D}^{H}(\gamma, \delta)$, then we have $M \otimes N \in{ }_{A} \mathcal{Y D}^{H}\left(\delta \alpha \delta^{-1} \gamma, \delta \beta\right)$ with structures:

$$
\begin{aligned}
& a \triangleright(m \otimes n)=a_{2} \cdot m \otimes a_{1} \cdot n, \\
& \rho_{M \otimes N}(m \otimes n):=(m \otimes n)_{\langle 0\rangle} \otimes(m \otimes n)_{\langle 1\rangle}=m_{(0)} \otimes n_{(0)} \otimes \zeta_{\delta}\left(m_{(1)}\right) \zeta_{\delta \alpha \delta^{-1}}\left(n_{(1)}\right)
\end{aligned}
$$

if and only if the following condition holds:

$$
\begin{align*}
& \left.a_{2(0)} \otimes a_{1(0)} \otimes \zeta_{\delta \beta}\left(a_{2(1)}\right) \zeta_{\delta}(c) \zeta_{\delta \alpha}\left(S^{-1}\left(a_{2(-1)}\right)\right) \zeta_{\delta \alpha}\left(a_{1(1)}\right) \zeta_{\delta \alpha \delta^{-1}}(d) \zeta_{\delta \alpha \delta^{-1} \gamma}\left(S^{-1}\left(a_{1(-1)}\right)\right)\right) \\
= & a_{(0) 2} \otimes a_{(0) 1} \otimes \zeta_{\delta \beta}\left(a_{(1)}\right) \zeta_{\delta}(c) \zeta_{\delta \alpha \delta^{-1}}(d) \zeta_{\delta \alpha \delta^{-1} \gamma}\left(S^{-1}\left(a_{-1}\right)\right) . \tag{3.3}
\end{align*}
$$

Proof It is easy to see that $M \otimes N$ is a left $A$-module and $M \otimes N$ is a right $H$-comodule. We compute the compatibility condition:

$$
\begin{aligned}
& \rho_{M \otimes N}(a \triangleright(m \otimes n)) \\
= & \left(a_{2} \cdot m\right)_{(0)} \otimes\left(a_{1} \cdot n\right)_{(0)} \otimes \zeta_{\delta}\left(\left(a_{2} \cdot m\right)_{(1)}\right) \zeta_{\delta \alpha \delta^{-1}}\left(\left(a_{1} \cdot n\right)_{(1)}\right) \\
= & a_{2(0)} \cdot m_{(0)} \otimes a_{1(0)} \cdot n_{(0)} \otimes \zeta_{\delta}\left(\zeta_{\beta}\left(a_{2(1)}\right) m_{(1)} \zeta_{\alpha}\left(S^{-1}\left(a_{2(-1)}\right)\right)\right) \\
& \zeta_{\delta \alpha \delta^{-1}}\left(\zeta_{\delta}\left(a_{1(1)}\right) n_{(1)} \zeta_{\gamma}\left(S^{-1}\left(a_{1(-1)}\right)\right)\right) \\
= & a_{2(0)} \cdot m_{(0)} \otimes a_{1(0)} \cdot n_{(0)} \otimes \zeta_{\delta \beta}\left(a_{2(1)}\right) \zeta_{\delta}\left(m_{(1)}\right) \zeta_{\delta \alpha}\left(S^{-1}\left(a_{2(-1)}\right)\right) \zeta_{\delta \alpha}\left(a_{1(1)}\right) \\
& \left.\zeta_{\delta \alpha \delta^{-1}}\left(n_{(1)}\right) \zeta_{\delta \alpha \delta^{-1} \gamma}\left(S^{-1}\left(a_{1(-1)}\right)\right)\right) \\
\stackrel{(3.3)}{=} & a_{(0) 2} \cdot m_{(0)} \otimes a_{(0) 1} \cdot n_{(0)} \otimes \zeta_{\delta \beta}\left(a_{(1)}\right) \zeta_{\delta}\left(m_{(1)}\right) \zeta_{\delta \alpha \delta^{-1}}\left(n_{(1)}\right) \zeta_{\delta \alpha \delta^{-1} \gamma}\left(S^{-1}\left(a_{-1}\right)\right) \\
= & a_{(0)} \cdot(m \otimes n)_{\langle 0\rangle} \otimes \zeta_{\delta \beta}\left(a_{(1)}\right)(m \otimes n)_{\langle 1\rangle} \zeta_{\delta \alpha \delta^{-1} \gamma}\left(S^{-1}\left(a_{-1}\right)\right)
\end{aligned}
$$

and this shows that $M \otimes N \in{ }_{A} \mathcal{Y D}^{H}\left(\delta \alpha \delta^{-1} \gamma, \delta \beta\right)$.
Conversely, by Remark 3.2 , since $A \otimes H \in{ }_{A} \mathcal{Y D}^{H}(\alpha, \beta)$, we let $m=1 \otimes c$ and $n=1 \otimes d$ for any $c, d \in H$ and easily get eq. (3.3).

The following proposition is straightforward.
Proposition 3.5 For any $N \in{ }_{A} \mathcal{Y D}^{H}(\gamma, \delta)$ and $(\alpha, \beta) \in G$. Define ${ }^{(\alpha, \beta)} N=N$ as vector space, with structures

$$
\begin{aligned}
& a \wedge=\xi_{\alpha^{-1} \beta}(a) \cdot n, \\
& \rho(n):=n_{[0]} \otimes n_{[1]}=n_{(0)} \otimes \zeta_{\beta^{-1} \delta \alpha \delta^{-1}}\left(n_{(1)}\right) .
\end{aligned}
$$

Then we have that ${ }^{(\alpha, \beta)} N \in{ }_{A} \mathcal{Y D}^{H}\left((\alpha, \beta) \#(\gamma, \delta) \#(\alpha, \beta)^{-1}\right)$ if and only if the following condition holds:

$$
\begin{align*}
& \xi_{\alpha^{-1 \beta}}(a)_{(0)} \otimes \zeta_{\beta^{-1} \delta \alpha \delta^{-1}}\left(\zeta_{\delta}\left(\xi_{\alpha^{-1} \beta}(a)_{(-1)}\right) c \zeta_{\gamma}\left(S^{-1}\left(\xi_{\alpha^{-1} \beta}(a)_{(-1)}\right)\right)\right) \\
= & \xi_{\alpha^{-1} \beta}\left(a_{(0)}\right) \otimes \zeta_{\beta^{-1} \delta \beta}\left(a_{(-1)}\right) \xi_{\beta^{-1} \delta \alpha \delta^{-1}}(c) \zeta_{\beta^{-1} \delta \alpha \delta^{-1} \gamma \delta^{-1} \beta}\left(S^{-1}\left(a_{(1)}\right)\right) . \tag{3.4}
\end{align*}
$$

Furthermore, let $M \in{ }_{A} \mathcal{Y D}^{H}(\alpha, \beta)$ and $(\mu, \nu) \in G$. Then we have

$$
(\alpha, \beta) \#(\mu, \nu) N={ }^{(\alpha, \beta)}\left({ }^{(\mu, \nu)} N\right), \quad(\mu, \nu)(M \otimes N)={ }^{(\mu, \nu)} M \otimes^{(\mu, \nu)} N
$$

Proof We only show the first claim as follows.
By Remark 3.2, $A \otimes H \in{ }_{A} \mathcal{Y D}^{H}(\gamma, \delta)$ for any $(\gamma, \delta) \in G$. For any $d \in H$, then we have $(a(1 \otimes d))_{[0]} \otimes(a \otimes(1 \otimes d))_{[1]}=a_{[0]}(1 \otimes d)_{[0]} \otimes \zeta_{\beta^{-1} \delta \beta}\left(a_{(-1)}\right)(1 \otimes d)_{[1]} \zeta_{\beta^{-1} \delta \alpha \delta^{-1} \gamma \delta \delta^{-1} \beta}\left(S^{-1}\left(a_{(1)}\right)\right)$, which implies eq. (3.4).

Conversely, one has

$$
\begin{aligned}
& (a)_{[0]} \otimes(a)_{[1]} \\
= & \left(\xi_{\alpha^{-1} \beta}(a) \cdot n\right)_{(0)} \otimes \zeta_{\beta^{-1} \delta \alpha \delta^{-1}}\left(\left(\xi_{\alpha^{-1} \beta}(a) \cdot n\right)_{(1)}\right) \\
= & \xi_{\alpha^{-1} \beta}(a)_{(0)} \cdot n_{(0)} \otimes \zeta_{\beta^{-1} \delta \alpha \delta^{-1}}\left(\zeta_{\delta}\left(\xi_{\alpha^{-1} \beta}(a)_{(-1)}\right) n_{(1)} \zeta_{\gamma}\left(S^{-1}\left(\xi_{\alpha^{-1} \beta}(a)_{(-1)}\right)\right)\right) \\
\stackrel{(3.4)}{=} & \xi_{\alpha^{-1} \beta}\left(a_{(0)}\right) \cdot n_{(0)} \otimes \zeta_{\beta^{-1} \delta \beta}\left(a_{(-1)}\right) \xi_{\beta^{-1} \delta \alpha \delta^{-1}}\left(n_{(1)}\right) \zeta_{\beta^{-1} \delta \alpha \delta^{-1} \gamma \delta^{-1} \beta}\left(S^{-1}\left(a_{(1)}\right)\right) \\
= & a_{(0)} n_{[0]} \otimes \zeta_{\beta^{-1} \delta_{\beta}}\left(a_{(-1)}\right) n_{[1]} \zeta_{\beta^{-1} \delta \alpha \delta^{-1} \gamma \delta^{-1} \beta}\left(S^{-1}\left(a_{(1)}\right)\right) .
\end{aligned}
$$

Now define a group homomorphism $\varphi: G \longrightarrow \operatorname{Aut}\left({ }_{A} \mathcal{Y} \mathcal{D}_{G}^{H}\right),(\alpha, \beta) \mapsto \varphi_{(\alpha, \beta)}$, as

$$
\varphi_{(\alpha, \beta)}:{ }_{A} \mathcal{Y} \mathcal{D}^{H}(\gamma, \delta) \longrightarrow{ }_{A} \mathcal{Y} \mathcal{D}^{H}\left((\alpha, \beta) \#(\gamma, \delta) \#(\alpha, \beta)^{-1}\right), \varphi_{\alpha, \beta}(N)={ }^{(\alpha, \beta)} N,
$$

and the functor $\varphi_{(\alpha, \beta)}$ acts as identity on morphisms.
Consider now a map $\mathscr{Q}: H \otimes H \rightarrow A \otimes A$ with a twisted convolution inverse $\mathscr{R}$, that means that

$$
\mathscr{Q}\left(h_{2} \otimes g_{2}\right) \mathscr{R}\left(h_{1} \otimes g_{1}\right)=\varepsilon(h) 1_{A} \otimes \varepsilon(g) 1_{A}
$$

for all $h, g \in H$. Sometimes, we write $\mathscr{Q}(h \otimes g):=\mathscr{Q}^{1}(h \otimes g) \otimes \mathscr{Q}^{2}(h \otimes g)$ for all $h, g \in H$.
For any $M \in{ }_{A} \mathcal{Y D}^{H}(\alpha, \beta), N \in{ }_{A} \mathcal{Y D}^{H}(\gamma, \delta)$ and $P \in{ }_{A} \mathcal{Y D}^{H}(\mu, \nu)$. Define a map as follows:

$$
\begin{align*}
& c_{M, N}: M \otimes N \rightarrow{ }^{M} N \otimes M \\
& c_{M, N}(m \otimes n)=\mathscr{Q}\left(n_{(1)} \otimes \zeta_{\alpha^{-1}}\left(m_{(1)}\right)\right)\left(n_{(0)} \otimes m_{(0)}\right) \tag{3.5}
\end{align*}
$$

In what follows, our main aim is to give some necessary and sufficient conditions on $\mathscr{Q}$ such that the $c_{M, N}$ defines a braiding on ${ }_{A} \mathcal{Y} \mathcal{D}_{G}^{H}$. For this, we will find conditions under which $c_{M, N}$ is both $A$-linear and $H$-colinear, and the following conditions hold:

$$
\begin{align*}
& c_{M \otimes N, P}=\left(c_{M, N_{P}} \otimes i d_{N}\right) \circ\left(i d_{M} \otimes c_{N, P}\right),  \tag{3.6}\\
& c_{M, N \otimes P}=\left(i d_{M} \otimes c_{M, P}\right) \circ\left(c_{M, N} \otimes i d_{P}\right) \tag{3.7}
\end{align*}
$$

Furthermore, if $M \in{ }_{A} \mathcal{Y D}^{H}(\alpha, \beta)$ and $N \in{ }_{A} \mathcal{Y D}^{H}(\gamma, \delta)$, then we want to show the following:

$$
\begin{equation*}
c_{(\mu, \nu)_{M,(\mu, \nu)_{N}}}=c_{M, N} \tag{3.8}
\end{equation*}
$$

holds, for any $(\mu, \nu) \in G$.
In order to approach to our main result we need some lemmas.
Lemma 3.6 For any $M \in{ }_{A} \mathcal{Y D}^{H}(\alpha, \beta)$ and $N \in{ }_{A} \mathcal{Y D}^{H}(\gamma, \delta)$. Then $c_{M, N}$ is $A$-linear if and only if the following condition is satisfied:

$$
\begin{align*}
& \mathscr{Q}\left(\zeta_{\delta}\left(a_{1(-1)}\right) d \zeta_{\gamma}\left(S^{-1}\left(a_{1(1)}\right)\right) \otimes \zeta_{\alpha^{-1}}\left(\zeta_{\beta}\left(a_{2(-1)}\right) c \zeta_{\alpha}\left(S^{-1}\left(a_{2(1)}\right)\right)\right)\left(a_{1(0)} \otimes a_{2(0)}\right)\right. \\
= & {\left[\left(\xi_{\alpha^{-1} \beta} \otimes 1\right) \Delta^{c o p}(a)\right] \mathscr{Q}\left(d \otimes \zeta_{\alpha^{-1}}(c)\right) } \tag{3.9}
\end{align*}
$$

for all $a \in A$ and $c, d \in H$.
Proof If $c_{M, N}$ is $A$-linear then it is easy to get

$$
a \cdot c_{M, N}(m \otimes n)=\left[\left(\xi_{\alpha^{-1} \beta} \otimes 1\right) \Delta^{c o p}(a)\right] \mathscr{Q}\left(n_{(1)} \otimes \zeta_{\alpha^{-1}}\left(m_{(1)}\right)\right)\left(n_{(0)} \otimes m_{(0)}\right)
$$

and

$$
\begin{aligned}
& c_{M, N}(a \cdot(m \otimes n)) \\
= & \mathscr{Q}\left(\zeta_{\delta}\left(a_{1(-1)}\right) n_{(1)} \zeta_{\gamma}\left(S^{-1}\left(a_{1(1)}\right)\right) \otimes \zeta_{\alpha^{-1}}\left(\zeta_{\beta}\left(a_{2(-1)}\right) m_{(1)} \zeta_{\alpha}\left(S^{-1}\left(a_{2(1)}\right)\right)\right)\right. \\
& \left(a_{1(0)} \cdot n_{(0)} \otimes a_{2(0)} \cdot m_{(0)}\right) .
\end{aligned}
$$

Considering these equations and taking $M=N=A \otimes C$ and $m=1 \otimes c$ and $n=1 \otimes d$ for all $c, d \in H$. Then we can get eq. (3.9).

Conversely, by the above formulas it is easy to see that $c_{M, N}$ is $A$-linear.
Lemma 3.7 For any $M \in{ }_{A} \mathcal{Y D}^{H}(\alpha, \beta)$ and $N \in{ }_{A} \mathcal{Y D}^{H}(\gamma, \delta)$. Then $c_{M, N}$ is $H$-colinear if and only if the following condition is satisfied:

$$
\begin{align*}
& \mathscr{Q}\left(d_{1} \otimes \zeta_{\alpha^{-1}}\left(c_{1}\right)\right) \otimes \zeta_{\delta}\left(c_{2}\right) \zeta_{\delta \alpha \delta^{-1}}\left(d_{2}\right)=\mathscr{Q}^{1}\left(d_{2} \otimes \zeta_{\alpha^{-1}}\left(c_{2}\right)\right)_{(0)} \otimes \mathscr{Q}^{2}\left(d_{2} \otimes \zeta_{\alpha^{-1}}\left(c_{2}\right)\right)_{(0)} \\
& \otimes \zeta_{\delta \alpha \delta^{-1}}\left(\zeta_{\delta}\left(\mathscr{Q}^{1}\left(d_{2} \otimes \zeta_{\alpha^{-1}}\left(c_{2}\right)\right)_{(-1)}\right) d_{1} \zeta_{\gamma}\left(S^{-1}\left(\mathscr{Q}^{1}\left(d_{2} \otimes \zeta_{\alpha^{-1}}\left(c_{2}\right)\right)_{(1)}\right)\right)\right) \\
& \otimes \zeta_{\delta \alpha \delta^{-1} \gamma \alpha^{-1}}\left(\zeta_{\alpha}\left(\mathscr{Q}^{2}\left(d_{2} \otimes \zeta_{\alpha^{-1}}\left(c_{2}\right)\right)_{(-1)}\right) c_{1} \zeta_{\alpha}\left(S^{-1}\left(\mathscr{Q}^{2}\left(d_{2} \otimes \zeta_{\alpha^{-1}}\left(c_{2}\right)\right)_{(1)}\right)\right)\right) \tag{3.10}
\end{align*}
$$

for all $c, d \in H$.

Proof If $c_{M, N}$ is $H$-colinear then we do the following calculations:

$$
\begin{aligned}
& \rho \circ c_{M, N}(m \otimes n) \\
= & \left(\mathscr{Q}^{1}\left(n_{(1)} \otimes \zeta_{\alpha^{-1}}\left(m_{(1)}\right)\right) \cdot n_{(0)}\right)_{\langle 0\rangle} \otimes\left(\mathscr{Q}^{2}\left(n_{(1)} \otimes \zeta_{\alpha^{-1}}\left(m_{(1)}\right)\right) \cdot m_{(0)}\right)_{(0)} \\
& \otimes\left(\zeta_{\beta}\left(\mathscr{Q}^{1}\left(n_{(1)} \otimes \zeta_{\alpha^{-1}}\left(m_{(1)}\right)\right) \cdot n_{(0)}\right)_{\langle 1\rangle}\right)\left(\zeta_{\delta \alpha \delta^{-1} \gamma \alpha^{-1}}\left(\mathscr{Q}^{2}\left(n_{(1)} \otimes \alpha^{-1} \cdot m_{(1)}\right) \cdot m_{(0)}\right)_{(1)}\right) \\
= & \left(\mathscr{Q}^{1}\left(n_{(1)} \otimes \zeta_{\alpha^{-1}}\left(m_{(1)}\right)\right) \cdot n_{(0)}\right)_{(0)} \otimes\left(\mathscr{Q}^{2}\left(n_{(1)} \otimes \zeta_{\alpha^{-1}}\left(m_{(1)}\right)\right) \cdot m_{(0)}\right)_{(0)} \\
& \otimes\left(\zeta_{\delta \alpha \delta^{-1}}\left(\mathscr{Q}^{1}\left(n_{(1)} \otimes \zeta_{\alpha^{-1}}\left(m_{(1)}\right)\right) \cdot n_{(0)}\right)_{(1)}\right)\left(\zeta_{\delta \alpha \delta^{-1} \gamma \alpha^{-1}}\left(\mathscr{Q}^{2}\left(n_{(1)} \otimes \zeta_{\alpha^{-1}}\left(m_{(1)}\right)\right) \cdot m_{(0)}\right)_{(1)}\right) \\
= & \left(\mathscr{Q}^{1}\left(n_{(1) 2} \otimes \zeta_{\alpha^{-1}}\left(m_{(1) 2}\right)\right)_{(0)} \cdot n_{(0)}\right) \otimes\left(\mathscr{Q}^{2}\left(n_{(1) 2} \otimes \zeta_{\alpha^{-1}}\left(m_{(1) 2}\right)\right)_{0} \cdot m_{(0)}\right) \\
& \otimes \zeta_{\delta \alpha \delta^{-1}}\left(\zeta_{\delta}\left(\mathscr{Q}^{1}\left(n_{(1) 2} \otimes \zeta_{\alpha^{-1}}\left(m_{(1) 2}\right)\right)_{(-1)}\right) n_{(1) 1} \zeta_{\gamma}\left(S^{-1}\left(\mathscr{Q}^{1}\left(n_{(1) 2} \otimes \zeta_{\alpha^{-1}}\left(m_{(1) 2}\right)\right)_{(1)}\right)\right)\right) \\
& \otimes \zeta_{\delta \alpha \delta^{-1} \gamma \alpha^{-1}}\left(\zeta_{\alpha}\left(\mathscr{Q}^{2}\left(n_{(1) 2} \otimes \zeta_{\alpha^{-1}}\left(m_{(1) 2}\right)\right)_{(-1)}\right) m_{(1) 1} \zeta_{\alpha}\left(S^{-1}\left(\mathscr{Q}^{2}\left(n_{(1) 2} \otimes \zeta_{\alpha^{-1}}\left(m_{(1) 2}\right)\right)_{(1)}\right)\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(c_{M, N} \otimes i d\right) \circ \rho(m \otimes n)=c_{M, N}(m \otimes n)_{\langle 0\rangle} \otimes(m \otimes n)_{\langle 1\rangle} \\
= & \mathscr{Q}\left(n_{(1) 1} \otimes \zeta_{\alpha^{-1}}\left(m_{(1) 1}\right)\right)\left(n_{(0)} \otimes m_{(0)}\right) \otimes \zeta_{\delta}\left(m_{(1) 2}\right) \zeta_{\delta \alpha \delta^{-1}}\left(n_{(1) 2}\right) .
\end{aligned}
$$

Now we let $M=N=A \otimes H$ and take $m=1 \otimes c$ and $n=1 \otimes d$ for all $c, d \in H$. Then we can get eq. (3.10).

Conversely, by the above formulas it is easy to see that $c_{M, N}$ is $H$-colinear.
Lemma 3.8 For any $M \in{ }_{A} \mathcal{Y D}^{H}(\alpha, \beta), N \in{ }_{A} \mathcal{Y D}^{H}(\gamma, \delta)$ and $P \in{ }_{A} \mathcal{Y D}^{H}(\mu, \nu)$. Then eq. (3.6) holds if and only if the following condition is satisfied, with $\mathscr{U}=\mathscr{Q}$ :

$$
\begin{align*}
& \left(i d \otimes \Delta^{c o p}\right) \mathscr{Q}\left(h \otimes \zeta_{\gamma^{-1}}\left(\zeta_{\delta \alpha^{-1}}(c) d\right)\right)=\left[( \xi _ { \gamma ^ { - 1 } \delta } \otimes 1 ) \mathscr { U } \left(\zeta_{\delta^{-1} \nu \delta}\left(\mathscr{Q}^{1}\left(h_{2} \otimes \zeta_{\gamma^{-1}}(d)\right)_{(-1)}\right)\right.\right. \\
& \left.\left.h_{1} \zeta_{\delta^{-1} \nu \gamma \nu^{-1} \mu \gamma^{-1} \delta}\left(S^{-1}\left(\mathscr{Q}^{1}\left(h_{2} \otimes \zeta_{\gamma^{-1}}(d)\right)_{(1)}\right)\right) \otimes \zeta_{\alpha^{-1}}(c)\right)\right] \\
& \left(\mathscr{Q}^{1}\left(h_{2} \otimes \zeta_{\gamma^{-1}}(d)\right)_{(0)} \otimes 1\right) \otimes \mathscr{Q}^{2}\left(h_{2} \otimes \zeta_{\gamma^{-1}}(d)\right) \tag{3.11}
\end{align*}
$$

for all $c, d, h \in H$.
Proof If eq. (3.6) holds. Then we compute as follows:

$$
\begin{aligned}
& \left(c_{M, N_{P}} \otimes i d_{N}\right) \circ\left(i d_{M} \otimes c_{N, P}\right)(m \otimes n \otimes p) \\
= & \mathscr{U}\left(\left(\mathscr{Q}^{1}\left(p_{(1)} \otimes \zeta_{\gamma^{-1}}\left(n_{(1)}\right)\right) \cdot p_{(0)}\right)_{(1)} \otimes \zeta_{\alpha^{-1}}\left(m_{(1)}\right)\right)\left(\left(\mathscr{Q}^{1}\left(p_{(1)} \otimes \zeta_{\gamma^{-1}}\left(n_{(1)}\right)\right) \cdot p_{(0)}\right)_{(0)}\right. \\
& \left.\otimes m_{(0)} \otimes \mathscr{Q}^{2}\left(p_{(1)} \otimes \zeta_{\gamma^{-1}}\left(n_{(1)}\right)\right) \cdot n_{(0)}\right) \\
= & {\left[( \xi _ { \gamma ^ { - 1 } \delta } \otimes 1 ) \mathscr { U } \left(\zeta_{\delta^{-1} \nu \delta}\left(\mathscr{Q}^{1}\left(p_{(1) 2} \otimes \zeta_{\gamma^{-1}}\left(n_{(1)}\right)\right)_{(-1)}\right) p_{(1) 1} \zeta_{\delta^{-1} \nu \gamma \nu^{-1} \mu \gamma^{-1} \delta}\right.\right.} \\
& \left.\left.\left(S^{-1}\left(\mathscr{Q}^{1}\left(p_{(1) 2} \otimes \zeta_{\gamma^{-1}}\left(n_{(1)}\right)\right)_{(1)}\right)\right) \otimes \zeta_{\alpha^{-1}}\left(m_{(1)}\right)\right)\right] \\
& \left(\mathscr{Q}^{1}\left(p_{(1) 2} \otimes \zeta_{\gamma^{-1}}\left(n_{(1)}\right)\right)_{(0)} \cdot p_{(0)} \otimes m_{(0)}\right) \otimes \mathscr{Q}^{2}\left(p_{(1) 2} \otimes \zeta_{\gamma^{-1}}\left(n_{(1)}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& c_{M \otimes N, P}(m \otimes n \otimes p) \\
= & \mathscr{Q}\left(p_{(1)} \otimes \zeta_{\gamma^{-1} \delta \alpha^{-1} \delta^{-1}}\left((m \otimes n)_{\langle 1\rangle}\right)\right)\left(p_{(0)} \otimes(m \otimes n)_{\langle 0\rangle}\right) \\
= & \mathscr{Q}\left(p_{(1)} \otimes \zeta_{\gamma^{-1}}\left(\zeta_{\delta \alpha^{-1}}\left(m_{(1)}\right) n_{(1)}\right)\right)\left(p_{(0)} \otimes\left(m_{(0)} \otimes n_{(0)}\right)\right) .
\end{aligned}
$$

Take $M=N=P=A \otimes H$ and $m=1 \otimes c$, and $n=1 \otimes d$, and $p=1 \otimes h$ for all $c, d, h \in H$. Then we obtain eq. (3.11).

Conversely, the proof is straightforward. We omit the details.
Lemma 3.9 For any $M \in{ }_{A} \mathcal{Y D}^{H}(\alpha, \beta), N \in{ }_{A} \mathcal{Y D}^{H}(\gamma, \delta)$ and $P \in{ }_{A} \mathcal{Y D}^{H}(\mu, \nu)$. Then eq. (3.7) holds if and only if the following condition is satisfied, with $\mathscr{U}=\mathscr{Q}$ :

$$
\begin{align*}
& \left(\Delta^{c o p} \otimes i d\right) \mathscr{Q}\left(\zeta_{\mu}\left(d \zeta_{\gamma \mu^{-1}}(h)\right)\right) \otimes \zeta_{\alpha^{-1}}(c)=\mathscr{Q}^{1}\left(d \otimes \zeta_{\alpha^{-1}}\left(c_{2}\right)\right) \otimes \mathscr{U}\left(h \otimes \zeta_{\alpha^{-1}}\right. \\
& \left(\mathscr { Q } ^ { 2 } \left(d \otimes \zeta _ { \alpha ^ { - 1 } } \left(\zeta _ { \beta } ( \mathscr { Q } ^ { 2 } ( d \otimes \zeta _ { \alpha ^ { - 1 } } ( c ) ) _ { ( - 1 ) } ) m _ { ( 1 ) 1 } \zeta _ { \alpha } \left(S^{-1}\right.\right.\right.\right. \\
& \left.\left.\left.\left.\left(\mathscr{Q}^{2}\left(d \otimes \zeta_{\alpha^{-1}}(c)\right)_{(1)}\right)\right)\right)\right)\right)\left(1 \otimes \mathscr{Q}^{2}\left(d \otimes \zeta_{\alpha^{-1}}(c)\right)_{(0)}\right) \tag{3.12}
\end{align*}
$$

for all $c, d, h \in H$.
Proof If eq.(3.7) holds, then we have

$$
\begin{aligned}
& \left(i d_{M} N \otimes c_{M, P}\right) \circ\left(c_{M, N} \otimes i d_{P}\right)(m \otimes n \otimes p) \\
= & \mathscr{Q}^{1}\left(n_{(1)} \otimes \zeta_{\alpha^{-1}}\left(m_{(1)}\right)\right) \cdot n_{(0)} \otimes \mathscr{U}\left(p_{(1)} \otimes \zeta_{\alpha^{-1}}\left[\left(\mathscr{Q}^{2}\left(n_{(1)} \otimes \zeta_{\alpha^{-1}}\left(m_{(1)}\right)\right) \cdot m_{(0)}\right)_{(1)}\right]\right) \\
& \left(p_{(0)} \otimes\left(\mathscr{Q}^{2}\left(n_{(1)} \otimes \zeta_{\alpha^{-1}}\left(m_{(1)}\right)\right) \cdot m_{(0)}\right)_{(0)}\right) \\
= & \mathscr{Q}^{1}\left(n_{(1)} \otimes \zeta_{\alpha^{-1}}\left(m_{(1) 2}\right)\right) \cdot n_{(0)} \otimes \mathscr{U}\left(p _ { ( 1 ) } \otimes \zeta _ { \alpha ^ { - 1 } } \left(\mathscr { Q } ^ { 2 } \left(n _ { ( 1 ) } \otimes \zeta _ { \alpha ^ { - 1 } } \left(\zeta _ { \beta } \left(\mathscr { Q } ^ { 2 } \left(n_{(1)}\right.\right.\right.\right.\right.\right. \\
& \left.\left.\left.\left.\left.\left.\otimes \zeta_{\alpha^{-1}}\left(m_{(1)}\right)\right)_{(-1)}\right) m_{(1) 1} \zeta_{\alpha}\left(S^{-1}\right)\left(\mathscr{Q}^{2}\left(n_{(1)} \otimes \zeta_{\alpha^{-1}}\left(m_{(1)}\right)\right)_{(1)}\right)\right)\right)\right)\right)\left(p _ { ( 0 ) } \otimes \mathscr { Q } ^ { 2 } \left(n_{(1)}\right.\right. \\
& \left.\left.\otimes \zeta_{\alpha^{-1}}\left(m_{(1)}\right)\right)_{(0)} \cdot m_{(0)}\right)
\end{aligned}
$$

and

$$
c_{M, N \otimes P}(m \otimes n \otimes p)=\mathscr{Q}\left(\zeta_{\mu}\left(n_{(1)}\right) \zeta_{\mu \gamma \mu^{-1}}\left(p_{(1)}\right) \otimes \zeta_{\alpha^{-1}}\left(m_{(1)}\right)\right)\left(n_{(0)} \otimes p_{(0)} \otimes m_{(0)}\right)
$$

Take $M=N=P=A \otimes H$ and $m=1 \otimes c$, and $n=1 \otimes d$, and $p=1 \otimes h$ for all $c, d, h \in H$. Then we obtain eq. (3.12).

Conversely, it is straightforward.
Lemma 3.10 For any $M \in{ }_{A} \mathcal{Y D}^{H}(\alpha, \beta), N \in{ }_{A} \mathcal{Y D}^{H}(\gamma, \delta)$ and $P \in{ }_{A} \mathcal{Y D}^{H}(\mu, \nu)$. Then eq. (3.8) holds if and only if the following condition holds:

$$
\begin{equation*}
\left(\xi_{\mu^{-1} \nu} \otimes \xi_{\mu^{-1} \nu}\right) \mathscr{Q}\left(\zeta_{\nu^{-1} \delta \mu \delta^{-1}}(d) \otimes \zeta_{\nu^{-1} \mu \alpha^{-1}}(c)\right)=\mathscr{Q}\left(d \otimes \zeta_{\alpha^{-1}}(c)\right) \tag{3.13}
\end{equation*}
$$

for all $c, d \in H$.
Proof Straightforward.
Therefore, we can summarize our results as follows.
Theorem 3.11 Let $A$ and $H$ be bialgebras and $\pi$ a group with the unit $e$. Let $\xi$ : $\pi \longrightarrow \operatorname{Aut}(A)$ and $\zeta: \pi \longrightarrow \operatorname{Aut}(H)$ be group homomorphisms. Let $A$ be an $H$-bicomodule algebra and $\mathscr{Q}: H \otimes H \longrightarrow A \otimes A$ a twisted convolution invertible map. Then the family of maps given by eq. (3.5) defines a braiding on the category ${ }_{A} \mathcal{Y} \mathcal{D}_{G}^{H}$ if and only if equations $(3.2)-(3.4)$ and (3.9)-(3.13) are satisfied.

Definition 3.12 Let $A$ and $H$ be bialgebras and $\pi$ a group with the unit $e$. Let $\xi: \pi \longrightarrow \operatorname{Aut}(A)$ and $\zeta: \pi \longrightarrow \operatorname{Aut}(H)$ be group homomorphisms. Let $A$ be an $H-$ bicomodule algebra. We say that a $G$-double structure is $(A, H)$ together with a linear map $\mathscr{Q}: H \otimes H \longrightarrow A \otimes A$ such that the following conditions hold:
(1) $\quad \varepsilon_{A}(a) 1_{H}=\varepsilon_{A}\left(a_{(0)}\right) \zeta_{\alpha}\left(a_{(-1)}\right) \zeta_{\beta}\left(S^{-1}\left(a_{(1)}\right)\right)$;
(2) $\left.\quad a_{2(0)} \otimes a_{1(0)} \otimes \zeta_{\delta \beta}\left(a_{2(1)}\right) \zeta_{\delta}(c) \zeta_{\delta \alpha}\left(S^{-1}\left(a_{2(-1)}\right)\right) \zeta_{\delta \alpha}\left(a_{1(1)}\right) \zeta_{\delta \alpha \delta^{-1}}(d) \zeta_{\delta \alpha \delta^{-1} \gamma}\left(S^{-1}\left(a_{1(-1)}\right)\right)\right)$ $=a_{(0) 2} \otimes a_{(0) 1} \otimes \zeta_{\delta \beta}\left(a_{(1)}\right) \zeta_{\delta}(c) \zeta_{\delta \alpha \delta^{-1}}(d) \zeta_{\delta \alpha \delta^{-1} \gamma}\left(S^{-1}\left(a_{-1}\right)\right) ;$
(3) $\quad \xi_{\alpha^{-1} \beta}(a)_{(0)} \otimes \zeta_{\beta^{-1} \delta \alpha \delta^{-1}}\left(\zeta_{\delta}\left(\xi_{\alpha^{-1} \beta}(a)_{(-1)}\right) c \zeta_{\gamma}\left(S^{-1}\left(\xi_{\alpha^{-1} \beta}(a)_{(-1)}\right)\right)\right)$ $=\xi_{\alpha^{-1} \beta}\left(a_{(0)}\right) \otimes \zeta_{\beta^{-1} \delta \beta}\left(a_{(-1)}\right) \xi_{\beta^{-1} \delta \alpha \delta^{-1}}(c) \zeta_{\beta^{-1} \delta \alpha \delta^{-1} \gamma \delta^{-1} \beta}\left(S^{-1}\left(a_{(1)}\right)\right) ;$
(4) $\mathscr{Q}\left(\zeta_{\delta}\left(a_{1(-1)}\right) d \zeta_{\gamma}\left(S^{-1}\left(a_{1(1)}\right)\right) \otimes \zeta_{\alpha^{-1}}\left(\zeta_{\beta}\left(a_{2(-1)}\right) c \zeta_{\alpha}\left(S^{-1}\left(a_{2(1)}\right)\right)\right)\left(a_{1(0)} \otimes a_{2(0)}\right)\right.$ $=\left[\left(\xi_{\alpha^{-1} \beta} \otimes 1\right) \Delta^{c o p}(a)\right] \mathscr{Q}\left(d \otimes \zeta_{\alpha^{-1}}(c)\right) ;$
(5) $\mathscr{Q}\left(d_{1} \otimes \zeta_{\alpha^{-1}}\left(c_{1}\right)\right) \otimes \zeta_{\delta}\left(c_{2}\right) \zeta_{\delta \alpha \delta^{-1}}\left(d_{2}\right)=\mathscr{Q}^{1}\left(d_{2} \otimes \zeta_{\alpha^{-1}}\left(c_{2}\right)\right)_{(0)} \otimes \mathscr{Q}^{2}\left(d_{2} \otimes \zeta_{\alpha^{-1}}\left(c_{2}\right)\right)_{(0)}$ $\otimes \zeta_{\delta \alpha \delta^{-1}}\left(\zeta_{\delta}\left(\mathscr{Q}^{1}\left(d_{2} \otimes \zeta_{\alpha^{-1}}\left(c_{2}\right)\right)_{(-1)}\right) d_{1} \zeta_{\gamma}\left(S^{-1}\left(\mathscr{Q}^{1}\left(d_{2} \otimes \zeta_{\alpha^{-1}}\left(c_{2}\right)\right)_{(1)}\right)\right)\right)$
$\otimes \zeta_{\delta \alpha \delta^{-1} \gamma \alpha^{-1}}\left(\zeta_{\alpha}\left(\mathscr{Q}^{2}\left(d_{2} \otimes \zeta_{\alpha^{-1}}\left(c_{2}\right)\right)_{(-1)}\right) c_{1} \zeta_{\alpha}\left(S^{-1}\left(\mathscr{Q}^{2}\left(d_{2} \otimes \zeta_{\alpha^{-1}}\left(c_{2}\right)\right)_{(1)}\right)\right)\right) ;$
(6) $\quad\left(i d \otimes \Delta^{c o p}\right) \mathscr{Q}\left(h \otimes \zeta_{\gamma^{-1}}\left(\zeta_{\delta \alpha^{-1}}(c) d\right)\right)=\left[\left(\xi_{\gamma^{-1} \delta} \otimes 1\right) \mathscr{U}\left(\zeta_{\delta^{-1} \nu \delta}\left(\mathscr{Q}^{1}\left(h_{2} \otimes \zeta_{\gamma^{-1}}(d)\right)_{(-1)}\right)\right.\right.$
$\left.\left.h_{1} \zeta_{\delta^{-1} \nu \gamma \nu^{-1} \mu \gamma^{-1} \delta}\left(S^{-1}\left(\mathscr{Q}^{1}\left(h_{2} \otimes \zeta_{\gamma^{-1}}(d)\right)_{(1)}\right)\right) \otimes \zeta_{\alpha^{-1}}(c)\right)\right]$
$\left(\mathscr{Q}^{1}\left(p_{(1) 2} \otimes \zeta_{\gamma^{-1}}(d)\right)_{(0)} \otimes 1\right) \otimes \mathscr{Q}^{2}\left(p_{(1) 2} \otimes \zeta_{\gamma^{-1}}(d)\right) ;$
(7) $\quad\left(\Delta^{c o p} \otimes i d\right) \mathscr{Q}\left(\zeta_{\mu}\left(d \zeta_{\gamma \mu^{-1}}(e)\right)\right) \otimes \zeta_{\alpha^{-1}}(c)=\mathscr{Q}^{1}\left(d \otimes \zeta_{\alpha^{-1}}\left(c_{2}\right)\right) \otimes \mathscr{U}\left(h \otimes \zeta_{\alpha^{-1}}\right.$
$\left(\mathscr{Q}^{2}\left(d \otimes \zeta_{\alpha^{-1}}\left(\zeta_{\beta}\left(\mathscr{Q}^{2}\left(d \otimes \zeta_{\alpha^{-1}}(c)\right)_{(-1)}\right) m_{(1) 1} \zeta_{\alpha}\left(S^{-1}\right.\right.\right.\right.$
$\left.\left.\left.\left.\left(\mathscr{Q}^{2}\left(d \otimes \zeta_{\alpha^{-1}}(c)\right)_{(1)}\right)\right)\right)\right)\right)\left(1 \otimes \mathscr{Q}^{2}\left(d \otimes \zeta_{\alpha^{-1}}\left(m_{(1)}\right)\right)_{(0)} \cdot m_{(0)}\right) ;$
(8) $\left(\xi_{\mu^{-1} \nu} \otimes \xi_{\mu^{-1} \nu}\right) \mathscr{Q}\left(\zeta_{\nu^{-1} \delta \mu \delta^{-1}}(d) \otimes \zeta_{\nu^{-1} \mu \alpha^{-1}}(c)\right)=\mathscr{Q}\left(d \otimes \zeta_{\alpha^{-1}}(c)\right)$;
(9) There exists a map: $\mathscr{R}: H \otimes H \longrightarrow A \otimes A$ such that $\mathscr{Q} * \mathscr{R}(c \otimes d)=\mathscr{R} * \mathscr{Q}(c \otimes d)=\varepsilon(c) \varepsilon(d) 1 \otimes 1$.

Proposition 3.13 Let $M \in{ }_{A} \mathcal{Y D}^{H}(\alpha, \beta)$ and assume that $M$ is finite-dimensional. Then
(1) If the following condition holds:

$$
\begin{align*}
& S^{-1}\left(a_{(0)}\right)_{(0)} \otimes \zeta_{\beta^{-1}}\left(a_{(-1)}\right) \zeta_{\beta^{-1} \alpha^{-1}} S\left(\zeta_{\beta}\left(S^{-1}\left(a_{(0)}\right)_{(-1)}\right) h \zeta_{\alpha} S^{-1}\right. \\
& \left.\left(\left(S^{-1}\left(a_{(0)}\right)_{(1)}\right)\right)\right) \zeta_{\beta^{-1} \alpha^{-1} \beta}\left(S^{-1}\left(a_{(-1)}\right)\right)=S^{-1}(a) \otimes \zeta_{\beta^{-1} \alpha^{-1}} S(h) \tag{3.14}
\end{align*}
$$

for all $a \in A$ and $h \in H$, then $M^{*}$ is an object in $M \in{ }_{A} \mathcal{Y} \mathcal{D}^{H}\left(\beta^{-1} \alpha^{-1} \beta, \beta^{-1}\right)$, with the module action and comodule coaction as follows:

$$
\begin{aligned}
& (a \bullet f)(m)=f\left(S^{-1}(h) \cdot m\right) \\
& \rho(f)(m)=f_{\langle 0\rangle}(m) \otimes f_{\langle 1\rangle}=f\left(m_{(0)}\right) \otimes \zeta_{\beta^{-1} \alpha^{-1}} S\left(m_{(1)}\right)
\end{aligned}
$$

for $a \in A, f \in M^{*}$ and $m \in M$.
(2) The maps $b_{M}: k \rightarrow M \otimes M^{*}, b_{M}(1)=\sum_{i} e_{i} \otimes e^{i}$ (where $e_{i}$ and $e^{i}$ are dual bases in $M$ and $\left.M^{*}\right)$ and $d_{M}: M^{*} \otimes M \rightarrow k, d_{M}(f \otimes m)=f(m)$ are morphisms in ${ }_{A} \mathcal{Y} \mathcal{D}_{G}^{H}$ and we have

$$
\left(i d_{M} \otimes d_{M}\right)\left(b_{M} \otimes i d_{M}\right)=i d_{M} ; \quad\left(d_{M} \otimes i d_{M^{*}}\right)\left(i d_{M^{*}} \otimes b_{M}\right)=i d_{M^{*}}
$$

Proof (1) For all $a \in A$ and $f \in M^{*}$, we compute

$$
\begin{aligned}
& \left(a_{(0)} \bullet f_{\langle 0\rangle}\right)(m) \otimes \zeta_{\beta^{-1}}\left(a_{(-1)}\right) f_{\langle 1\rangle} \zeta_{\beta^{-1} \alpha^{-1} \beta}\left(S^{-1}\left(a_{(-1)}\right)\right) \\
= & f_{\langle 0\rangle}\left(S^{-1}\left(a_{(0)}\right) \cdot m\right) \otimes \zeta_{\beta^{-1}}\left(a_{(-1)}\right) f_{\langle 1\rangle} \zeta_{\beta^{-1} \alpha^{-1} \beta}\left(S^{-1}\left(a_{(-1)}\right)\right) \\
= & f\left(\left(S^{-1}\left(a_{(0)}\right) \cdot m\right)_{(0)}\right) \otimes \zeta_{\beta^{-1}}\left(a_{(-1)}\right) \zeta_{\beta^{-1} \alpha^{-1}} S\left(\left(S^{-1}\left(a_{(0)}\right) \cdot m\right)_{(1)}\right) \zeta_{\beta^{-1} \alpha^{-1} \beta}\left(S^{-1}\left(a_{(-1)}\right)\right) \\
= & \left.f\left(S^{-1}\left(a_{(0)}\right)_{(0)} \cdot m_{(0)}\right)\right) \otimes \zeta_{\beta^{-1}}\left(a_{(-1)}\right) \zeta_{\beta^{-1} \alpha^{-1}} S\left(\zeta_{\beta}\left(S^{-1}\left(a_{(0)}\right)_{(-1)}\right) m_{(1)}\right. \\
& \left.\zeta_{\alpha} S^{-1}\left(\left(S^{-1}\left(a_{(0)}\right)_{(1)}\right)\right)\right) \zeta_{\beta^{-1} \alpha^{-1} \beta}\left(S^{-1}\left(a_{(-1)}\right)\right) \\
\stackrel{(3.14)}{=} & f\left(S^{-1}(a) \cdot m_{(0)}\right) \otimes \zeta_{\beta^{-1} \alpha^{-1}} S\left(m_{(1)}\right) \\
= & (a \bullet f)_{\langle 0\rangle}(m) \otimes(a \bullet f)_{\langle 1\rangle}
\end{aligned}
$$

and as required.
(2) Straightforward.

Similarly, one has the following result.
Proposition 3.14 Let $M \in{ }_{A} \mathcal{Y D}^{H}(\alpha, \beta)$ and assume that $M$ is finite dimensional. Then
(1) If the following condition holds:

$$
\begin{align*}
& S\left(a_{(0)}\right)_{(0)} \otimes \zeta_{\beta^{-1}}\left(a_{(-1)}\right) \zeta_{\beta^{-1} \alpha^{-1}} S^{-1}\left(\zeta_{\beta}\left(S\left(a_{(0)}\right)_{(-1)}\right) h \zeta_{\alpha} S^{-1}\right. \\
& \left.\left(\left(S\left(a_{(0)}\right)_{(1)}\right)\right)\right) \zeta_{\beta^{-1} \alpha^{-1} \beta}\left(S\left(a_{(-1)}\right)\right)=S(a) \otimes \zeta_{\beta^{-1} \alpha^{-1}} S^{-1}(h) \tag{3.15}
\end{align*}
$$

for all $a \in A$ and $h \in H$, then ${ }^{*} M$ is an object in $M \in{ }_{A} \mathcal{Y} \mathcal{D}^{H}\left(\beta^{-1} \alpha^{-1} \beta, \beta^{-1}\right)$, with the module action and comodule coaction as follows:

$$
\begin{aligned}
& (a \bullet f)(m)=f(S(h) \cdot m) \\
& \rho(f)(m)=f_{\langle 0\rangle}(m) \otimes f_{\langle 1\rangle}=f\left(m_{(0)}\right) \otimes \zeta_{\beta^{-1} \alpha^{-1}} S^{-1}\left(m_{(1)}\right)
\end{aligned}
$$

for $a \in A, f \in M^{*}$ and $m \in M$.
(2) The maps $b_{M}: k \rightarrow{ }^{*} M \otimes M, b_{M}(1)=\sum_{i} e^{i} \otimes e_{i}$ (where $e_{i}$ and $e^{i}$ are dual bases in $M$ and $\left.{ }^{*} M\right)$ and $d_{M}: M \otimes{ }^{*} M \rightarrow k, d_{M}(m \otimes f)=f(m)$ are morphisms in ${ }_{A} \mathcal{Y D}_{G}^{H}$ and we have

$$
\left(d_{M} \otimes i d_{M}\right)\left(i d_{M} \otimes b_{M}\right)=i d_{M} ; \quad\left(i d_{*_{M}} \otimes d_{M}\right)\left(b_{M} \otimes i d_{*_{M}}\right)=i d{ }_{*_{M}}
$$

Now, we consider ${ }_{A} \mathcal{Y} \mathcal{D}_{G ; f d}^{H}$, the subcategory of ${ }_{A} \mathcal{Y} \mathcal{D}_{G}^{H}$ consisting of finite dimensional objects, then by Proposition 3.13 and Proposition 3.14, we get

Theorem 3.15 If equations (3.14) and (3.15) hold then ${ }_{A} \mathcal{Y} \mathcal{D}_{G ; f d}^{H}$ is a braided $T$ category with left and right dualities being given as in Proposition 3.13 and Proposition 3.14 , respectively.

## 4 Application

In this section we construct a quasitriangular $T$-coalgebra $\left\{A \# H^{*}(\alpha, \beta)\right\}_{(\alpha, \beta) \in G}$, such that $\left\{{ }_{A} \mathcal{Y D}^{H}(\alpha, \beta)\right\}_{(\alpha, \beta) \in G}$ is isomorphic to the representation category of the quasitriangular $T$-coalgebra $\left\{A \# H^{*}(\alpha, \beta)\right\}_{(\alpha, \beta) \in G}$.

Theorem 4.1 Let $G$ be a twisted semi-direct square group and $\mathscr{Q}: H \otimes H \longrightarrow A \otimes A$ a linear map. Let $\xi: \pi \longrightarrow A u t(A)$ and $\zeta: \pi \longrightarrow A u t(H)$ be group homomorphisms. Let $(A, H, \mathscr{Q})$ be a $G$-double structure and assume $H$ is finite-dimensional with a dual basis $\left(e_{i}\right)_{i} \in H$ and $\left(e^{i}\right)_{i} \in H^{*}$. Then $A \# H^{*}=\left\{A \# H^{*}(\alpha, \beta)\right\}_{(\alpha, \beta) \in G}$ is a $T$-coalgebra with the following structures:

The multiplication $m_{(\alpha, \beta)}$ and the unit of $A \# H^{*}(\alpha, \beta)$ are given, for any $a, b \in A$ and $h^{*}, g^{*} \in H^{*}$, by

$$
\begin{align*}
& \left(a \# h^{*}\right)\left(b \# g^{*}\right)=\sum_{i}\left\langle h^{*}, \zeta_{\beta}\left(b_{(-1)}\right) e_{i} \zeta_{\alpha}\left(S^{-1}\left(b_{(1)}\right)\right)\right\rangle a b_{(0)} \# e^{i} g^{*}  \tag{4.1}\\
& 1_{A \# H^{*}(\alpha, \beta)}=1_{A} \otimes \varepsilon_{H} \tag{4.2}
\end{align*}
$$

The comultiplication and the counit of $A \# H^{*}$ are given by

$$
\begin{align*}
& \Delta_{(\alpha, \beta),(\gamma, \delta)}: A \# H^{*}((\alpha, \beta) \#(\gamma, \delta)) \longrightarrow A \# H^{*}(\alpha, \beta) \otimes A \# H^{*}(\gamma, \delta), \\
& \Delta_{(\alpha, \beta),(\gamma, \delta)}\left(a \# h^{*}\right)=\left(a_{2} \# \zeta_{\delta^{-1}}^{*}\left(h_{1}^{*}\right) \otimes\left(a_{1} \# \zeta_{\delta \alpha^{-1} \delta^{-1}}^{*}\left(h_{2}^{*}\right)\right)\right.  \tag{4.3}\\
& \varepsilon_{A \# H^{*}}: A \# H^{*} \longrightarrow k, \quad \varepsilon_{A \# H^{*}}\left(a \# h^{*}\right)=\left(\varepsilon_{A} \otimes 1_{H}\right)\left(a \# h^{*}\right) \tag{4.4}
\end{align*}
$$

for all $a \in A$ and $h^{*} \in H^{*}$.
The antipode $S^{A \# H^{*}}=\left\{S_{(\alpha, \beta)}^{A \# H^{*}}: A \# H^{*}(\alpha, \beta) \longrightarrow A \# H^{*}\left((\alpha, \beta)^{-1}\right)\right\}_{(\alpha, \beta) \in G}$ is given by

$$
\begin{align*}
& S_{(\alpha, \beta)}^{A \# H^{*}}\left(a \# h^{*}\right)=\sum_{i}\left\langle\zeta_{\beta^{-1} \alpha^{-1}}^{*}\left(S^{*}\left(h^{*}\right)\right), \zeta_{\beta^{-1}}\left(S^{-1}(a)_{(-1)}\right) e_{i},\right. \\
& \zeta_{\beta^{-1} \alpha^{-1} \beta}\left(S^{-1}\left(S^{-1}(a)_{(1)}\right)\right)>S^{-1}(a)_{(0)} \# e^{i} . \tag{4.5}
\end{align*}
$$

The crossing $\varphi=\left\{\varphi_{(\alpha, \beta)}^{(\gamma, \delta)}: A \# H^{*}(\gamma, \delta) \longrightarrow A \# H^{*}\left((\alpha, \beta) \#(\gamma, \delta) \#(\alpha, \beta)^{-1}\right)\right\}$ is defined by

$$
\begin{equation*}
\varphi_{(\alpha \beta)}^{(\gamma, \delta)}\left(a \# c^{*}\right)=\xi_{\beta^{-1} \alpha}(a) \# \zeta_{\beta^{-1} \delta \alpha \delta^{-1}}^{*}\left(h^{*}\right) \tag{4.6}
\end{equation*}
$$

Proof First, the multiplication is associative and the unit is $1_{A} \otimes \varepsilon_{H}$.
Second, it is straightforward to check that $\varphi$ satisfies equation (2.10), (2.11) and (2.12), i.e., the following conditions hold:
$\varphi$ is multiplicative, i.e., $\varphi_{(\alpha, \beta)} \circ \varphi_{(\gamma, \delta)}=\varphi_{(\alpha, \beta) \#(\gamma, \delta)}$, in particular $\varphi_{(e, e)}^{(\gamma, \delta)}=i d$.
$\varphi$ is compatible with $\Delta$, i.e.,

$$
\Delta_{(\mu, \nu) \#(\alpha, \beta) \#(\mu, \nu)^{-1},(\mu, \nu) \#(\gamma, \delta) \#(\mu, \nu)^{-1}} \circ \varphi_{(\mu, \nu)}^{(\alpha, \beta) \#(\gamma, \delta)}=\left(\varphi_{(\mu, \nu)}^{(\alpha, \beta)} \otimes \varphi_{(\mu, \nu)}^{(\alpha, \beta)}\right) \circ \Delta_{(\alpha, \beta),(\gamma, \delta)}
$$

$\varphi$ is compatible with $\varepsilon$, i.e., $\varepsilon \circ \varphi_{(\alpha, \beta)}^{(e, e)}=\varepsilon$ for any $(\alpha, \beta) \in G$.
Third, the coassociativity follows directly from the coassociativity of the comultiplication of $A$ and $H^{*}$ and the fact $\varphi_{(\alpha, \beta)} \circ \varphi_{(\gamma, \delta)}=\varphi_{(\alpha, \beta) \#(\gamma, \delta)}$. It is easy to check that $\varepsilon_{A \# H^{*}}$ is multiplicative.

Fourth, we show that $\Delta_{(\alpha, \beta),(\gamma, \delta)}$ is an algebra morphism, i.e., axiom (2.8) is satisfied. For any $a, b \in A$ and $h^{*}, g^{*} \in H^{*}$, we do calculations as follows:

$$
\begin{aligned}
& \Delta_{(\alpha, \beta),(\gamma, \delta)}\left[\left(a \# h^{*}\right)\left(b \# g^{*}\right)\right] \\
= & \left\langle h^{*}, e_{i}^{\psi((\alpha, \beta) \#(\gamma, \delta)}\right\rangle\left(a_{\psi} b\right)_{2} \# \zeta_{\delta^{-1}}^{*}\left(\left(e^{i} d^{*}\right)_{1}\right) \otimes\left(a_{\psi} b\right)_{1} \# \zeta_{\delta \alpha^{-1} \delta^{-1}}^{*}\left(\left(e^{i} d^{*}\right)_{2}\right) \\
= & \left\langle h^{*}, \zeta_{\delta \beta}\left(b_{(-1)}\right) e_{j} e_{i} \zeta_{\delta \alpha \delta^{-1} \gamma}\left(S^{-1}\left(b_{(1)}\right)\right)\right\rangle a_{2}\left(b_{(0)}\right)_{2} \# \zeta_{\delta^{-1}}^{*}\left(e^{j} g_{1}^{*}\right) \otimes a_{1}\left(b_{(0)}\right)_{1} \# \zeta_{\delta \alpha^{-1} \delta^{-1}}^{*}\left(e^{i} g_{2}^{*}\right) \\
= & \left\langle h^{*}, \zeta_{\delta \beta}\left(b_{(-1)}\right) \zeta_{\delta}\left(e_{j}\right) \zeta_{\delta \alpha \delta^{-1}}\left(e_{i}\right) \zeta_{\delta \alpha \delta^{-1} \gamma}\left(S^{-1}\left(b_{(1)}\right)\right)\right\rangle a_{2}\left(b_{(0)}\right)_{2} \\
& \# e^{j} \zeta_{\delta^{-1}}^{*}\left(g_{1}^{*}\right) \otimes a_{1}\left(b_{(0)}\right)_{1} \# e^{i} \zeta_{\delta \alpha^{-1} \delta^{-1}}^{*}\left(g_{2}^{*}\right) \\
= & \left\langle\zeta_{\delta^{-1}}^{*}\left(h^{*}\right), \zeta_{\beta}\left(\left(b_{2}\right)_{(-1)}\right) e_{j} \zeta_{\alpha}\left(S^{-1}\left(\left(b_{2}\right)_{(1)}\right)\right) \zeta_{\alpha \delta^{-1}}\left(\zeta_{\delta}\left(\left(b_{1}\right)_{(-1)}\right) e_{i} \zeta_{\gamma}\left(S^{-1}\left(\left(b_{1}\right)_{(1)}\right)\right)\right)\right\rangle \\
& a_{2}\left(b_{2}\right)_{(0)} \# e^{j} \zeta_{\delta^{-1}}^{*}\left(d_{1}^{*}\right) \otimes a_{1}\left(b_{1}\right)_{(0)} \# e^{i} \zeta_{\delta \alpha^{-1} \delta^{-1}}\left(g_{2}^{*}\right) \\
= & \left(a _ { 2 } \# \zeta _ { \delta - 1 } ^ { * } ( h _ { 1 } ^ { * } ) \left(b _ { 2 } \# \zeta _ { \delta - 1 } ^ { * } ( g _ { 1 } ^ { * } ) \otimes \left(a _ { 1 } \# \zeta _ { \delta \alpha ^ { - 1 } \delta ^ { - 1 } } ^ { * } ( h _ { 2 } ^ { * } ) \left(b_{1} \# \zeta_{\delta \alpha^{-1} \delta^{-1}}^{*}\left(d_{2}^{*}\right)\right.\right.\right.\right. \\
= & \Delta_{(\alpha, \beta)}\left(a \# h^{*}\right) \Delta_{(\gamma, \delta)}\left(b \# g^{*}\right) .
\end{aligned}
$$

Finally, for all $(\alpha, \beta) \in G$, we have to check axiom (2.9). We now prove one of them as follows:

$$
\begin{aligned}
& m_{(\alpha, \beta)^{-1}} \circ\left(S_{(\alpha, \beta)}^{A \# H^{*}} \otimes i d_{(\alpha, \beta)-1}\right) \circ \Delta_{(\alpha, \beta),(\alpha, \beta)^{-1}}\left(a \# h^{*}\right) \\
= & S_{(\alpha, \beta)}^{A \# H^{*}}\left(a _ { 2 } \# \zeta _ { \beta } ^ { * } ( h _ { 1 } ^ { * } ) \left(a_{1} \# \zeta_{\beta^{-1} \alpha^{-1} \beta}^{*}\left(h_{2}^{*}\right)\right.\right. \\
= & \sum_{i}\left\langle\zeta_{\beta^{-1} \alpha^{-1}}^{*} \zeta_{\beta}^{*} S^{*}\left(h_{1}^{*}\right), \zeta_{\beta^{-1}}\left(S^{-1}\left(a_{2}\right)_{(-1)}\right) e_{i} \zeta_{\beta^{-1} \alpha^{-1} \beta}\left(S^{-1}\left(S^{-1}\left(a_{2}\right)_{(1)}\right)\right)\right\rangle \\
& \left(S^{-1}\left(a_{2}\right)_{(0)} \# e^{i}\right)\left(a_{1} \# \zeta_{\beta^{-1} \alpha^{-1} \beta}^{*}\left(h_{2}^{*}\right)\right. \\
(4.1) & \sum_{i, j}\left\langle\zeta_{\beta^{-1} \alpha^{-1} \beta}^{*} S^{*}\left(h_{1}^{*}\right), \zeta_{\beta^{-1}}\left(S^{-1}\left(a_{2}\right)_{(-1)}\right) e_{i} \zeta_{\beta^{-1} \alpha^{-1} \beta}\left(S^{-1}\left(S^{-1}\left(a_{2}\right)_{(1)}\right)\right\rangle\right. \\
& \left\langle e^{i}, \zeta_{\beta^{-1}}\left(a_{1(-1)}\right) e_{j} \zeta_{\beta^{-1} \alpha^{-1} \beta}\left(S^{-1}\left(a_{1(1)}\right)\right\rangle\left(S^{-1}\left(a_{2}\right)_{(0)} a_{1(0)} \# e^{j} \zeta_{\beta^{-1} \alpha^{-1} \beta}^{*}\left(h_{2}^{*}\right)\right)\right. \\
= & \sum_{i, j}\left\langle\zeta_{\beta^{-1} \alpha^{-1} \beta}^{*} S^{*}\left(h_{1}^{*}\right), \zeta_{\beta^{-1}}\left(\left(S^{-1}\left(a_{2}\right) a_{1}\right)_{(-1)}\right) e_{i} \zeta_{\beta^{-1} \alpha^{-1} \beta}\left(S^{-1}\left(\left(S^{-1}\left(a_{2}\right) a_{1}\right)_{(1)}\right)\right)\right\rangle \\
= & \left(\left(S^{-1}\left(a_{2}\right) a_{1}\right)_{(0)} \# e^{j} \zeta_{\beta^{-1} \alpha^{-1} \beta}^{*}\left(h_{2}^{*}\right)\right) \\
= & \left.\varepsilon_{A}(a) \zeta_{\beta^{-1} \alpha^{-1} \beta}^{*} S^{*}\left(h_{1}^{*}\right) \zeta_{\beta^{-1} \alpha^{-1} \beta}^{*}\left(h_{2}^{*}\right)\right) \\
= & \left.1_{(\alpha, \beta)} \varepsilon_{A \otimes H^{*}} \# \# h^{*}\right),
\end{aligned}
$$

and the other one can be verified in the similar way.
Theorem 4.2 Let $G$ be a twisted semi-direct square group and and $\mathscr{Q}: H \otimes H \longrightarrow$ $A \otimes A$ a linear map. Let $\xi: \pi \longrightarrow \operatorname{Aut}(A)$ and $\zeta: \pi \longrightarrow \operatorname{Aut}(H)$ be group homomorphisms. Let $(A, H, \mathscr{Q})$ be a $G$-double structure and $H$ a finite-dimensional with a dual basis $\left(e_{i}\right)_{i} \in H$ and $\left(e^{i}\right)_{i} \in H^{*}$. Then the category ${ }_{A} \mathcal{Y D}^{H}$ is isomorphic to the category $\operatorname{Rep}\left(A \# H^{*}\right)$ of
representations of $A \# H^{*}$ as braided $T$-categories. Moreover, $A \# H^{*}=\left\{A \# H^{*}(\alpha, \beta)\right\}_{(\alpha, \beta) \in G}$ is a quasitriangular $T$-coalgebra with the quasitriangular structure given by

$$
\begin{aligned}
& R=\left\{R_{(\alpha, \beta),(\gamma, \delta)}\right. \\
= & \left.\sum_{i, j} e^{i} \# \mathscr{Q}^{1}\left(e_{i} \otimes \zeta_{\alpha}\left(e_{j}\right)\right) \otimes e^{j} \# \mathscr{Q}^{2}\left(e_{i} \otimes \zeta_{\alpha}\left(e_{j}\right)\right) \in A \# H^{*}(\alpha, \beta) \otimes A \# H^{*}(\gamma, \delta)\right\}
\end{aligned}
$$

for all $\alpha, \beta, \gamma, \delta \in \pi$.
Proof Since $(A, H, \mathscr{Q})$ is a $G$-double structure we have the braided $T$-category ${ }_{A} \mathcal{Y} \mathcal{D}_{G}^{H}$. The braiding on ${ }_{A} \mathcal{Y} \mathcal{D}_{G}^{H}$ translates into a braiding on the category $\operatorname{Rep}\left(A \# H^{*}\right)$ of representations of $A \# H^{*}$. But this means that $A \# H^{*}=\left\{A \# H^{*}(\alpha, \beta)\right\}_{(\alpha, \beta) \in G}$ is a quasitriangular $T$-coalgebra . The invertible map $\mathscr{Q}: H \otimes H \longrightarrow A \otimes A$ satisfying the conditions (4), (5), (6) and (7) in Definition 3.12 induces a map

$$
\widetilde{\mathscr{Q}}: k \longrightarrow A \# H^{*}(\alpha, \beta) \otimes A \# H^{*}(\gamma, \delta) .
$$

Then $\widetilde{\mathscr{Q}}(1)$ is just the corresponding $R_{(\alpha, \beta),(\gamma, \delta)} \in A \# H^{*}(\alpha, \beta) \otimes A \# H^{*}(\gamma, \delta)$.
In this case, we have the braiding on the category $\operatorname{Rep}\left(A \# H^{*}\right)$ :

$$
c_{M, N}: M \otimes N \rightarrow{ }^{M} N \otimes M, m \otimes n \mapsto\left[\tau_{(\gamma, \delta),(\alpha, \beta)} R_{(\alpha, \beta),(\gamma, \delta)}\right](n \otimes m)
$$

for any $M \in A \# H^{*}(\alpha, \beta) \mathscr{M}$ and $N \in A \# H^{*}(\gamma, \delta) \mathscr{M}$.

## References

[1] Caenepeel S, De Lombaerde M. A categorical approach to Turaev's Hopf group-coalgebras [J]. Comm. Algebra, 2007, 34(7): 2631-2657.
[2] Caenepeel S, Militaru G, Zhu S. Frobenius and separable functors for generalized module categories and nonlinear equations $[\mathrm{M}]$. Lect. Notes in Math., Berlin: Springer Verlag, 2002.
[3] Caenepeel S, Van Oystaeyen F, Zhou B. Making the category of Doi-Hopf modules into a braided monoidal category [J]. Algebr. Represent. Theor., 1998, 1: 75-96.
[4] Hobst D, Pareigis B. Double quantum groups [J]. J. Algebra, 2001, 242: 460-494.
[5] Kirillov A J. On $G$-equivariant modular categories[J]. arXiv: math/040119vl[math.QA], 2004.
[6] Panaite F, Staic M D. Generalized (anti) Yetter-Drinfel'd modules as components of a braided $T$-category [J]. Israel J. Math., 2007, 158: 349-366.
[7] Radford D E. The group of automorphisms of a semisimple Hopf algebra over a filed of characteristic 0 is finite [J]. Amer. J. of Math., 1990, 112(2): 331-357.
[8] Staic M D. A note on anti-Yetter-Drinfeld modules [J]. Contem. Math., 2007, 441: 149-153.
[9] Sweedler M. Hopf algebras [M]. New York: Benjamin, 1969.
[10] Turaev V. Quantum invariants of knots and 3-Manifolds [J]. de Gruyter Stud. Math., Vol. 18, Berlin: de Gruyter, 1994
[11] Turaev V. Homotopy field theory in dimension 3 and crossed group-categories [J]. arXiv: math/0005291vl[math.GT], 2005.
[12] Turaev V. Crossed group-categories [J]. Ara. J. Sci. Eng., 2008, 33: 483-503.
［13］Van Daele A，Van Keer S．The Yang－Baxter and Pentagon equation［J］．Composition Math．，1994， 91：201－221．
［14］Virelizier A．Hopf group－coalgebras［J］．J．Pure Appl．Algebra，2002，171：75－122．
［15］Virelizier A．Involutory Hopf group－coalgebras and flat bundles over 3－manifolds［J］．Fund．Math．， 2005，188：241－270．
［16］Wang S H．Tuaev group coalgebras and twisted Drinfeld double［J］．Indiana Univ．Math．J．，2008， 58（3）：1395－1417．
［17］Zunino M．Yetter－Drinfeld modules for crossed structures［J］．J．Pure Appl．Algebra，2004，193： 313－343．

## 辫子 $T$－范畴的构造

> 郭双建 $^{1}$, 董丽红 ${ }^{2}$
> (1.贵州财经大学数学与统计学院, 贵州贵阳 550025)
> (2.河南师范大学数学与信息科学学院, 河南新乡 453007)

摘要：本文首先引入了一类新的范畴 ${ }_{A} \mathcal{Y} \mathcal{D}_{G}^{H}$ ，这个范畴是一簇范畴 $\left\{{ }_{A} \mathcal{Y D}^{H}(\alpha, \beta)\right\}_{(\alpha, \beta) \in G}$ 的非交并，获得了范畴 $\left\{{ }_{A} \mathcal{Y D}^{H}(\alpha, \beta)\right\}_{(\alpha, \beta) \in G}$ 是一个辨子 $T$－范畴当且仅当 $(A, H, \mathscr{Q})$ 是一个 $G$－偶结构，推广了 2005 年Panaite和Staic的主要结论。最后，当 $H$ 是有限维时，构造了一个拟三角 $T$－余代数 $\left\{A \# H^{*}(\alpha, \beta)\right\}_{(\alpha, \beta) \in G}$ ，它的表示范畴与 $\left\{_{A} \mathcal{Y D}^{H}(\alpha, \beta)\right\}_{(\alpha, \beta) \in G}$ 是同构的．

关键词：量子Yetter－Drinfeld模；譬子 $T$－范畴；拟三角结构
$\operatorname{MR}(2010)$ 主题分类号： 16 T 05 中图分类号：O153．3


[^0]:    ＊Received date：2013－06－03 Accepted date：2013－09－10
    Foundation item：Supported by the NNSF of China（11101128）and the NSF of Jiangsu Province （BK2012736）．

    Biography：Guo Shuangjian（1981－），male，born at Heze，Shandong，doctor，associate professor， major in Hopf algebra and quantum group．

