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Abstract: In this article, we study the numerical radius isometry on matrix spaces. By
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1 Introduction

1.1 Linear Preserver Problems and Numerical Radius Isometry

Let M,, be the complex linear space of n X n (n > 2) matrices over complex field C. H,,
be the real linear space of n x n self-adjoint matrices over C. ® : M,, — M,, is a map (may
be non-linear). A general and interesting problem should been considered is as follows:

Problem 1.1 Find as few properties as possible that may be possessed by elements in
M,, or the subset of M,, and that are enough to determine the structure of the map ® if ¢
takes these properties as invariants, i.e, if ® preserves these properties.

When @ is linear, the above problem is so-called linear preserver problems (LPP). The
study of LPP can be traced back to the work of Frobenius in [7] and become one of the
most active and fertile research fields in the matrix theory and operator theory during the
past decades (see the survey paper [14]). Many results concerning LPP reveal the relations
between linear structure and algebraic structure of operators algebras.

Problem 1.1 is also associated with the geometry of matrices whose study was initiated
by Hua in the 1940s (see [10-13]). Consider the group of motions on M,, consisting of the

following maps:
A PAQ+ R,VYA € M, or A PA"Q + RVA € M,,

where P and @ are n X n invertible matrices and R is an n x n matrix, A"denotes the

transpose matrix of A. The fundamental problem of geometry of matrices is to characterize
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the group of motions by as few geometry invariants as possible [20]. Hua proved that
“adjacency” (A and B are adjacent if rank(A — B) = 1) is such an invariant for M,,.
The numerical range and numerical radius of A € M,, are respectively defined as

W(A) ={(Az,z) : 2 € S(C")} = {z" Az : x € S(C")},
w(A) =sup{|A|: A e W(A)}.

These concepts and their generalizations were studied extensively because of their con-
nections and applications to many different areas. In [15], Li and Semrl fond that the
geometry invariant “numerical radius distance” alone is sufficient to characterize the non-
linear maps on upper triangular matrices. In [1], Bai and Hou fond that the geometry
invariant “numerical radius distance” alone is sufficient to characterize the non-linear maps
from B(H) onto B(K), where B(H) is Banach space of all bounded linear operators on
complex Hilbert space H. Precisely, it is shown that ® : B(H) — B(K) is a surjective
numerical radius isometry, i.e, w(®(T) — ®(S5)) = w(T'—S) holds for all T\, S € B(H), if and
only if there exists complex unit p and operator R € B(K) such that ® takes one of the
following forms:

(a) There exists a unitary or conjugate unitary operator U : H — K such that
®(A) =puUAU* + R,YA € B(H);
(b) There exists a unitary or conjugate unitary operator U : H — K such that

®(A) = pUA*U* + R,VA € B(H).

1.2 Isometric Extension Between the Unit Spheres of Banach Spaces

Let EF and F' be Banach spaces, a mapping 7' : E — F is said to be isometric if
[T (z) = T(y)|| = [lo — y[| for all z,y € E.

In 1987, Tingley raised the following problem in [19]:

Problem 1.2 Let E and F be normed spaces with unit spheres S;(F) and S;(F).
Suppose that Vj : S1(E) — S1(F) is a surjective isometric mapping, is there a linear isometric
mapping V : E — F such that V' |g, (z)= V7

During the last two decades, many mathematicians have been engaged in Tingley’s
problem. This is a very nice mathematics problem since it is easy to understood but hard to
solve. Some mathematicians asked whether the problem can be solved completely for finite
dimensional Banach spaces. However, even in the case of two-dimensional Banach spaces,
there is still no answer. In [19], Tingley only proved if E and F’ are finite-dimensional Banach
spaces and Vg : S1(F) — S1(F) is a surjective isometric mapping, then Vo(—z) = —Vy(x)
for all z € S;(E).

During the last decade, many interesting results have been obtained on the above Tin-

gley’s problem. See [3, 4] and the survey paper [5]. All the results we mention above concern
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with isometries between the unit spheres of two Banach spaces of the same type. The first
paper in which the isometric extension problem between Banach spaces of different types is
consider in [2]. In that paper, isometric mappings from the unit sphere S;(F) to the unit
sphere of S1(C(£2)) (where F is a general Banach space and 2 is a compact Hausdorff space)
is considered, and a condition concerning an inequality was given under which Tingley’s
problem has a positive answer. After two years, X.N. Fang in [6] obtained a generalization

that the more general inequality:
1T(x) = AT (Y| < llz = Ayl (Va,y € Si1(E),VA € (0,1))

is a sufficient condition for having a positive answer of the Tingley’s problem (where T is a
surjective isometry from S;(E) onto S;(F)).

Moreover, Fang and Wang obtained in [6] a positive answer in Tingley’s problem between
E and C(2) (where, © is a “metrizable” compact Hausdorff space), i.e., ||T(x) — AT (y)|| <
|z — Ay|| holds for all z,y € S1(F) and X € (0,1) when E is a Banach space and F' = C(Q).
It is a beautiful result and obtained the above inequality by considering the unit spheres
S1(E*) and S;(F™) of the dual spaces.

Tingley’s problem doesn’t make sense in complex spaces. A simple counterexample
E =F =C,Vy(z) = z,(Vz € C,|z| = 1) shows there indeed exists a negative answer.
However, any complex Banach space is also a real Banach space and any complex-linear
isometry is also a real-linear, and therefore we can consider the real linear isometric extension
between the real Banach spaces over the complex field C.

Note that if ® is a surjective numerical radius isometry on H,,, let W(H) = ®(H)—®(0),
then w(V(H)) = w(®(H)) for every H € H,, and ¥(0) = 0. Since numerical radius is a norm
on H,, from Mazur-Ulam Theorem [16] that ¥ is real-linear. Consequently, we can assume
that @ itself is real-linear.

In this paper, We try to characterize the group of motions (i.e., H — PHQ or H +—
PH'™(Q) on the unit sphere S(H,) = {H € H, : w(H) = 1} of H,, which preservers the
“numerical radius distance” can determine the same type group of motions on the whole
space H,, and also can preserver the “numerical radius distance”. We obtain that surjective
numerical radius isometry ® : S(H,,) — S(H,,) satisfying w(®(H;)—a®(H:)) < w(H,—aH>)
for all Hy, Hy € S(H,) and « € (0,+00) can be real-linear extended to the whole space H,,,
and furthermore, there is a unitary matrix U € M,, and a real number p € {—1,1} such
that one of the following is true:

(1) ®(H) = uUHU* for every H € S(H,);

(2) ®(H) = pUH"U* for every H € S(H,,).

2 The Isometric Embedding Map Between M, and C(S(C"))

Let M,, be the space of n x n (n > 2) matrices over the complex field C and S(C") =
{zx € C" : ||z|| = 1} be the unit sphere of C". The numerical range (also know as the filed of
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values) and numerical radius of A € M,, are defined, respectively, by

W(A) ={(Az,z) : x € S(C")} = {a* Az : x € S(C")},
w(A) =sup{|A\|: A e W(A)}.

One may see [8] and chapter 1 in [9] for more information about numerical range and
numerical radius.
Lemma 2.1 [18] Let A € M,, and ||A|| = sup{||Az| : = € S(C")} be the operator
norm induced on M,,. Then )
LAl < w(4) < JA].

Lemma 2.2  The numerical radius w(-) is a norm on M,, and (M,,,w(+)) is a Banach
space.

Proof For every A, B € M,, and A € C, we have

(a) w(A) > 0 is trivial. We only to check that w(A) = 0 implies A = 0. By Lemma 2.1,
|A]| < 2w(A) =0. So ||A]| =0 and our claim follows.

(b) Absolute homogeneity.

w(AA) = sup [(AAz,z)| = || Hsup |(Az, z)| = |[Nw(A).

Iz =1 zll=1
(c) Subadditivity.
w(A+B) = sup [{((A+ B)x,x)| = sup |(Ax,z) + (Bz,z)]
[lz||=1 lz||=1
< sup ([{(Az,z)| + [(Bz,z)|) < sup [(Az,z)[+ sup [(Bz,z)| < w(A)+w(B).
llzll=1 llzll=1 llzll=1

So the numerical radius w(+) is a norm on M,, and (M,,,w(-)) is a Banach space since
it is finite-dimensional.

Since the unit sphere of C*, S(C") = {x € C" : ||z|| = 1} is a compact metric space,
C(S(C™)) is a Banach space of all the continuous complex-value functions on the compact
metric space S(C").

Theorem 2.3 (M,,,w(+)) is isometrically isomorphic to the closed complex-linear
subspace of C(S(C")).

Proof For each A € M,,, define f4 : S(C") — C by

fa(z) = 2" Az, Vo € S(C™).

It is easy to see that f, is continuous complex-value function on S(C™). Then we get a
map A — f4 from M, to C(S(C")).

First we show that A — f,4 is a linear mapping from M, to C(S(C™)).

In fact, For any A, B € M,, and A € C, we have

farp(x) =2 (A+ B)x = a*Ax + 2" Bx = fa(x) + fu(x) = (fa+ fB)(2)
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and

fra(@) = 2" (A)z = Az" Az = Ma(z) = (Afa)(z), Vo € S(C")

Next we show that A — f4 is an isometric mapping from M,, to C'(S(C")).

Ifa — f5ll = sup{|(fa — fB)(2)] : € S(C")}
= sup{|fa(z) — fe(x)| : z € S(C")} = sup{|z*Ax — 2" Bz| : x € S(C")}
= sup{|z"(A—B)z|:z € S(C")} =w(A - B).

Hence {fa : fa(z) = z*Az,Vz € S(C"),VA € M,} is a closed linear subspace of
C(S(C™)) and A — f, is an isometric isomorphism from M, onto {fa : fa(x) = 2*Ax,Va €
S(C™),VA € M, }.

We can easily get the similar conclusion on real-linear space (H,,w(-)).

Corollary 2.4  (H,,w(-)) is isometrically isomorphic to the closed real-linear subspace

of C(S(C™)).
3 Numerical Radius Isometric Extension from S(H,) onto Itself

3.1 The Properties of Numerical Radius Isometry from S(M,) onto Itself

From Lemma 2.2, the space (M,,w(-)) is a Banach space, we write M, instead of
(M, w(+)) for convenience. A mapping ® : M,, — M, is a numerical radius isometry if
w(®(A)—P(B)) =w(A—B) for all A, B € M,,. Denote by S(M,,) = {A e M, :w(A) =1}
the unit sphere of M,,.

Lemma 3.1 If A,B € S(M,,) are real linearly independent such that «A + BB €
S(M,,) holds for some «, 8 € R with a? 4+ 32 = 1, then condition (a) and (b) are equivalent.

(a) There exists a complex unit p such that (A, B) = u(l, £il).

(b) For any rank one matrix A; € S(M,,), there are o, 3 € R with a? + * = 1 such
that w(aA + BB+ A;) =1+ w(Ay).

Proof It is obvious that (a) implies (b).

Now assume (b) holds. For any z € S(C") and 6 € [0,27). Let Ay = exz*, it follows
from (b) that there are vy, 8y € R with o} + 57 = 1 such that

W(agA + ﬂgB + Ae) =1+ W(AO) = 27
which implies that there exists zy € S(C™) such that
|z5(cvo A+ Bo B)zo + 5 A070| = 2.

Since apA + ByB € S(M,,) and Ay € S(M,,), which implies that |z* (A + Gy B)z| <
1,|z*Agx| <1 for any x € S(C™). Hence

2 = |zy(cg A+ BoB)rg + x5 Agxg| < |Tj(g A+ BoB)xg| + |x)Agme| < 2.
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So we have |zj(agA + ByB)zg| = 1 and |z Apxg| = 1. From which we obtain zy = x
since Ag = e“zax*. So xj(agA + ByB)xe = €.

Suppose z*Ax = a1 + ias and x*Bxr = (1 + iy with aj,a0,81,02 € R. Let C =

( M gl € M5(R). By above equation, for any 6 € [0,27), we have
Q2 2

¥ (agA+ BpB)r = a*(agA)z + 2" (ByB)x
= ag(og +iag) + By(B1 +iB2)
= (a1ap + B10s) +i(azap + B250)

—_ 620.

Now let ug = (v, 8)"" then ug € S(R?) and

Cuy = ( @ B ) ( a0 ) = ( C?Se ) = (cos f,sin )",
ar o Bo sin ¢

Hence C' maps the unit ball in R? onto itself, and thus C' is an isometry on R? with the form

C = < cost —sint > GMQ(R) or C — ( cost sint ) 6M2(R)~

sint cost sint —cost

It follows that x* Az = ay + iz is a complex unit and z*Bx = +iz*Ax = o*(+id)z.

Since x € S(C") is arbitrary, we see that B = +iA, together with the convexity of
W (A), implies that A = I for some complex unit p. Hence (A, B) = p(I,+iI).

Lemma 3.2 Suppose @ : S(M,,) — S(M,,) is a surjective numerical radius isometry.
If ®(al + Bil) = a®(I) + pP(il) for all o, € R with o? + 5% = 1, then (®(1),®(i])) =
w(I,+4I)) for some complex unit y, and consequently, ®(AI) = uAl or ®(\I) = pAI for all
complex unit A.

Proof It is easy to check that real linearly independent pair (I,¢I) satisfying w(al +
Bil) = 1,i.e.,al + Bil € S(M,,) for all a,3 € R with o® + 32 = 1 and condition (b) of
Lemma 3.1, that is w(al + fil + A;) = 1 + w(A;).

Since ® : S(M,,) — S(M,,) is a surjective numerical radius isometry, it follows that

w(@®(I) + pO(I) + (A1) = w(@(al + pil) — &(—A1))
= w(al + il + Ay)
= 14 w(A)
= 1+ w(®(A)).
From Lemma 3.1, condition (a) holds, that is (®(I), ®(iI)) = p(I, +iI).
Hence ®(A\) = pAI or ®(AI) = pAl for all complex unit .
Theorem 3.3 Suppose @ : S(M,,) — S(M,,) is a surjective numerical radius isometry.
If ®(al + Bil) = a®(I) + BP(il) for all a, 8 € R with o? + 3% = 1, then W(®(A)) =
W(nA),VA € S(M,,) for some complex unit p.
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Proof By Lemma 3.2, there have two cases.

Casel ®(A) = pAl.

Assume that there exists v € C such that v € W(®(A))\ W(uA). Then there is a circle
with sufficient large radius and centered at a certain complex unit A such that W(A) lies

inside the circle, but « lies outside the circle. Hence
w(pA = A) < |y = Al Sw(®(4) = M) = w(®(A) = D(pA])) = w(A — pAl) = w(pA = Al),

which is a contradiction. So W(®(A)) € W(uA). Using the argument to ®~!, we obtain
that W(uA) C W(®(A)).

Case 2 ®(A\) = pMl.

Assume that there exists v € C such that v € W(®(A)) \ W(uA). Then there is a circle
with sufficient large radius and centered at a certain complex unit A such that W (A) lies

inside the circle, but v lies outside the circle. Hence
WpA =) < |y = A < w(®(A) = M) = w(®(A) — ®(aN])) = w(A — GM) = w(pA — ).

Which is a contradiction. So W (®(A4)) C W(uA). Using the argument to @, we
obtain that W (uA) C W(®(A)). So W(®(A)) = W(uA) for all A € S(M,,).

3.2 Numerical Radius Isometric Extension from S(H,) onto Itself

In this section, we turn to consider real linear space H,, of self-adjoint matrices over
complex field C.

Let us start using some notation and terminology that will be used throughout the
section. The space (H,,w(-)) is a Banach space. We write H,, instead of (H,,w(:)) for
convenience. The unit sphere of H,, is S(H,) = {H € H, : w(H) = 1} and the unit ball
of H, is B(H,) = {H € H, : w(H) < 1}. The dual space of H,, will be denoted by
(H,)*. Notice that the norm on (H,,)* is defined as || f*|| = sup{|f*(H)|: H € S(H,)}. Let
H e S(H,), we set St(H) ={G € S(H,) : w(H + G) = 2}.

To discuss the numerical radius isometry of S(H,,), we define the following relation <
borrowed from [21].

Definition 3.4 [21] For Hy, Hy, € H,,, H; is said to be smaller than H, (denoted by
H,<H,)ifw(H,+H) =w(H,)+w(H) implies w(Hs+ H) = w(Hy) +w(H) for all H € H,.

The relation <1 has the following properties:

Lemma 3.5 [21] For any Hy, Hs, H € H,,, we have

(1) Hy < Hy = Vky,ky > 0,k1Hy < koHo;

(2) Hi < Hy = w(H; + Hy) = w(H,) + w(H>);

(3) Hi<Hy < w(H,1+ H) = w(H;)+ 1 implies w(Hy+ H) = w(H2)+1,VH € S(H,,).

Lemma 3.6 [21] Suppose ® : S(H,,) — S(H,) is a surjective numerical radius isometry.
Then for any Hy, Hy € S(H,,), H1 < Hy <= ®(H;) < ®(Hy).

Corollary 3.7 Suppose ® : S(H,,) — S(H,) is a surjective numerical radius isometry.
Then for any Hy, Hy € S(H,), w(Hy + Hz) = 2 <= w(®(H,) + ©(H2)) = 2.



No. 6 Surjective numerical radius isometry on S(Hy) 1051

Proof If w(H; + Hs) = 2, then there exists g € C™ with ||xq|| = 1 such that
W(Hl) = |I‘SH1$O| = Q)(Hg) = |xSH2:1:0| =1.

For every m € N, put G,, = (1 — 2)H; + L H,. Then w(G,,) = w((1— L)H; + LH,) <1
and |2§Gpaol = |25((1 — S)Hy + ~Hsy)xo| = 1. Hence G,, € S(H,) and G,,, — H; as
m — oo, i.e., w(G,, — H) — 0.

We assert that G,,, < H,.

Suppose that w(G,, + H) = w(Gp,) +w(H) = 2 for some H € S(H,,), then there exists
f* € S((H,)*) such that f*(Gy, + H) = w(G,n + H) = 2. Since |f*(G)| < 1,|f*(H)| < 1,
we have f*(G,,) = f*(H) = 1. It follows that f*(H,) = f*(H2) = f*(H) = 1. Hence
2= f*(Hy+ H) <w(Hy + H) <2, which implies that w(Hy + H) = 2. By Lemma 3.5 (3),
we obtain G,, < H,.

From Lemma 3.6, we have ®(G,,,) <®(H;). Hence by Lemma 3.5 (2), we get w(®(G,,) +
®(Hy)) = w(Gp) +w(Hy) = 2. Because w(®(G,,) — ®(H,)) = w(Gp, — Hy) — 0 as m — o0,
thus w(®(H>) + (M) = lim w(®(Hy) + D(Gn)) = 2.

For the converse, we only to substitute ® with ®~! in the above proof since ® ! also is
an onto numerical radius isometry.

Definition 3.8 For z,y € C", we say z is equivalent to y (denoted by x ~ y) if y = ez
for some @ in [0, 27). The equivalent class of z is denoted by [z] = {e?z : VO € [0, 27)}.

For each xy € S(C™) and 6, € [0,27), define three sets:

NRA([xo]) = {H € S(Hn) : [wgHao| =1},
NRA([z0],1) = {H € S(H,.) : & Hag = 1},
NRA([xo],1) ={H € S(H,,) : zgHzo = land [z*Hz| < 1,Vz € S(C") \ [z0]}.

Next we give some properties of NRA([zo],1) and NRA; ([xo], 1).

Remark 1 S(H,) separates the points of S(C"/ ~), i.e., If z,y € S(C™) and [z] # [y],
then there exists H € S(H,,) such that x* Hx # y*Hy.

Proof 1If z,y € S(C") and [z] # [y], Then = # y. There must exists 1 < k <
n,k € N,zg,yr € C such that z, # y, (where x and yy is the kth component of z and y,
respectively).

Case 1 1If |xi| # |yx|, take H = diag(0,- - - ,O,k%h,(),-u ,0), clearly H € S(H,) and
*Hzx = |z|%, y*Hy = |yx|*. Then 2*Hz # y*Hy;

Case 2 If |zy| = |yx|, then there exists A € C with |A\| = 1 such that zy = Ays.
Together with the hypothesis of [z] # [y], there exists 1 <1 < n,l € N,I # k,z;,y, € C such
that x; = py, with p # A (where x; and y; is the [th component of x and y, respectively).

Subcase 2a If |z;| # |y;|, Take H = diag(0, - - - ,O,Itlh,(), -, 0);

Subcase 2b If |z;| = |y|, then || =1 and p # X such that z; = uy;.
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Take
0 - vy

e -0

(where G = (g;5) is n x n matrix with gx = yi¥, ik = wiyx and g;; = 0, (2,7) # (k, 1), (1, k)).

Then H = % € S(H,) and z*Hx = ﬁwkyﬂgﬁ()\ﬂ) (where R(A\iz) denote the
real part of \ii € A\ii), y*Hy = ﬁ|ykyl|2. It easy to check that x*Hx # y*Hy since
A€ CA# A =|p[=1.

Hence if [z] # [y], then there exists H € S(H,,) such that z*Hx # y*Hy for all x € [z]
and y € [y].

Remark 2 NRA,([zo],1) # 0.

Proof For each zy € S(C"), zoxy € NRA:([wo], 1).

Remark 3 Let zy € S(C"), then for any H,, € NRA;([zo],1), we have St(H,,)) =
NRA([zo],1) and NRA([z],1) is a closed convex subset of S(H,,).

Proof Let 2o € S(C") and H,,) € NRA;([x0],1), then for any H € St(Hy,)), we

have

2 =w(H+ Hyy)) =sup{|z"Hr + 2" Hpyjz| - v € S(C™)}
<sup{|z"Hz|: 2z € S(C")} + sup{|z*Hy x| : x € S(C")} = 2.

It follows that ajHzo = 1 and H € NRA([zo],1). Hence St(Hp,,)) € NRA([zo],1).

Conversely, for any H € N'RA([zo],1), we have w(H + Hy,,) = 2 for every Hj,, €
NRA([0],1)). It follows that H € St(H,,)). Hence St(Hy,) 2 NRA([zo], 1).

For any Hy, Hy € NRA([zo],1) and t € [0,1], we have x§((1 — t)H; 4+ tHs)zo = 1 and
w((1 —t)Hy + tH) < (1 — t)w(H;) + tw(Hz) = 1, which implies that (1 — ¢)H; + tHy €
NRA([z0],1). Hence NRA([xo],1) is convex.

Suppose {G.,} € NRA([zo],1)(m € N) such that G,, — H as m — oo, i.e., w(G,, —
H) — 0, then H € S(H,,) since |w(Gp,) —w(H)| < w(G,,—H) — 0 and w(G,,) = 1(¥m € N).
Therefore, from |2§Gpnzo —xiHxo| < sup{|z*Gnr—x*Hzx|:x € S(H,)} = w(G,, —H) — 0,
we have zHxo = 1. Hence H € NRA([zo],1) and NRA([xo],1) is closed.

Lemma 3.9 Suppose ® : S(H,) — S(H,) is a surjective numerical radius isometry.
Then for any z¢ € S(C") and Hy,, € NRA;([zo],1), we have

& N RA(fzo], 1)) = SH® (Hy).
Proof For any H € Y (NRA([zo],1)) and ®(H) € NRA([zo],1), we have

w(®(H) + Higy)) = 2.
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By Corollary 3.7, we have
w(H + @ ' (Hyy)) = 2,

hence H € St(® 1 (Hi,)).
Conversely, for any Hj,,) € NRA;([zo],1) and H € St(® ' (H,))), we have w(H +
¢~ '(Hy,))) = 2. By Corollary 3.7, w(®(H) + H},,)) = 2, namely,

(I)(H) € St(H[wo]) :NRA([xO]) 1)'

Therefore, H = ®~1(®(H)) € D1 (NRA([z0],1)).

Thus @' (NRA([zo],1)) = St(P~(H[w,)) for any Hiy,) € NRA;([20],1).

Lemma 3.10 Suppose ® : S(H,,) — S(H,) is a surjective numerical radius isometry.
Then for any zg € S(C"), @1 (NRA([zo],1)) is a closed convex subset of S(H.,).

Proof Let Hj,,) € NRA;([zo],1) be fixed. By Lemma 3.9, we have

w(® 7 (Hyg)) + Hi) = w(@ ™ (Hpo) + Ha) =2
for any Hy, Hy € Y (NRA([z0],1)). Take f; € S((H,)*) such that
[i(@7 (Hizy)) + Hy) = w(® ' (Hpwy)) + Hy) = 2.

Therefore, we have f;(® 1 (H,))) = fi(Hy) = 1 since | f{ (1 (Hz,p))| < 1 and |f5(Hy)| <
1. Hence

2= (@7 (Hypg) + 5 (87 (Hiay) + HL)) < (@ (Higy) + 5(07 (Hiy) + H)) < 2.

So w(®~(Hyy)) + 2(®7(Hisy)) + H1)) = 2. This means that

%(fb‘l(H[%]) L H) € SH(@ (Hpy) = & (NRA(z0], 1)-

So ®(5 (P! (Hpy,)) + H1)) € NRA([zo],1). From the assumption of ®(H,) € NRA([zo), 1)
and the convexity of NRA([zo], 1), it is easy to get w(P®(5(P(Hu,y)) + H1)) + ®(Hs)) = 2.
Thus from Corollary 3.7, we have

w(%(@fl(H[zo]) + H,)+ Hy) = 2.

Choose f; € S((H,)*) such that f5(3(®'(Hp) + Hi) + Hy) = 2. This implies that
f;((bil(H[afo])) = fg*(Hl) = f;(Hz) — 1. Hence

1 1
2= f5 (@7 (Hp)) + 5 (Hi+ ) < w(®™ (Hzy)) + 5 (Hi+ Hp)) < 2.
So w(® 1 (Hyy)) + 35(Hy + Hs)) = 2. Tt follows that

S UH 4 ) € SH®™ () = 27 (WRA(ro], 1)
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Therefore, @1 (NRA([zo],1)) is a convex subset.

Since ®~! is continuous and N'RA([z],1) is closed, D' (NRA([z0],1)) is a closed
subset.

Lemma 3.11 Suppose ¢ : S(H,,) — S(H,,) is a surjective numerical radius isometry.
Then for any = € S(C"), there exists fj;; € S((M,)*) such that fj ("' (NRA([z],1))) =1
(ie., fi(H) = 1,if H € "1 (NRA([z], 1))).

Proof By Lemma 3.10, ®~'(NRA([z],1)) is a closed convex subset of the surface
of unit ball B(H,). Hence ®'(NRA([z],1)) does not meet the interior of B(H,). By
Eidelheit Separation Theorem [17], there exists f{;) € S((H,)*) such that f{;)(H) =1 for all
H in @Y (NRA([z],1)).

Now, for any z € S(C"), take fj;,; € S((H,)") to be fixed as described in Lemma 3.10,
then we obtain a map: [z] — [,z € S(C").

Lemma 3.12  The map [z] — f,),z € S(C") is injective.

Proof Let z,y € S(C"), [z] # [y]. Suppose f{;; = f;;, then for any Hy,) € NRA ([z],1)
and Hp,) € NRA;([y],1), we have

1= fiy (@ (Hp) = [l (@7 (Hp)) = f73) (@ (Hpy))-

Hence
2= fi) (27 (Hy) + @71 (Hy)) < w(® ' (Hyy) + @71 (Hyy)) < 2.

It implies that w(®~(Hpy)) + @' (Hj,)) = 2. Which contradicts with
w(@_l(H[x]) + (I)_I(H[y])) = w(H[x] + H[y]) <2

since [z] # [y].
Lemma 3.13 Suppose ® : S(H,,) — S(H,) is a surjective numerical radius isometry.

If H € NRA([2]), then there exists f{;; € S((H,)*) such that f(®~'(H)) = 2" Hz.
Proof If 2*Hz = 1, then H € NRA([z],1). By Lemma 3.11, there exists f; €
S((Hn)*) such that fi,(®~'(H)) =1 =z*Ax.
If z*Hx = —1, then —H € N'RA([z],1). Hence for any H},; € N'RA;([z],1), we have

w(@H(H) = @7 (H}y)) = w(H — Hyy)) = w(—H + Hy) = 2.

It follows that —®~*(H) € St(®~*(H}y)) = P H(NRA([z],1)). By Lemma 3.11, there exists
fiy € S((Hn)*) such that fi, (~®~'(H)) = 1. Hence f},(®~'(H)) = -1 =z"Huz.

Theorem 3.14 Suppose ® : S(H,,) — S(H,) is a surjective numerical radius isometry.
If 2 € S(C") is an eigenvector of H € S(H,,), then there exists f;; € S((H,)*) such that

fin(H) = 2" (®(H))x

or
ff;](q)_l(H)) =x"Hzx.
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Proof Let {z1,z2, - ,z,} C S(C™) be pairwise orthogonal eigenvectors of H cor-
responding to eigenvalues pq, fio, - - , pn arranged in descending order. Then u; € R with
—1 < p; <1lforalll <¢<n and either uy =1 or u, = —1 for every self-adjoint matrix
H e S(H,) (see [8,9, 18]).

Assume z is a eigenvector corresponding to eigenvalue py (1 < k < n) of H, then
i = xiHxy. Take

n
G* = (1 F pp)xpay £ Zuz(arzxf)

i=1

and
U= (xl, oty L—1y Ly Thet1y " *° 71‘71)7
where
Gt = (1= m)esai + > lwia)
i=1
and

G = (1 + pp)xpwy, — Zﬂz‘(%‘xf)‘

i=1

It is easy to check that

G* € S(H,),

r5GFry = 2 Gy, = 1,

U*GFU = diag{dp1, -, Fpe_1,1, T, -+, Hn b,
U HU = diag{pu1, -+, ftk—1s Bios Bie15 " "+ 5 Hn }-

Hence G* € NRA([ro],1). By Lemma 3.13, we have ff;o](q)’l(Gi)) =1 and

LF flo) (@' (H)) ff;o](q)fl(Gi)) F Slze] (@' (H))

ff;()](‘i‘_l(Gi) TO(H))
(@1 (GE) F 71 (H))
= w(G*F¥H)

= w(U"(G*F H)U)

= 1F

= 1Fa;Hux.

IN

The above two inequalities imply x5 Hxo = f, (271 (H)).

Therefore G € NRA([zo],1). By Lemma 3.13, we have

fhg(@7H@) =1
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and

1— fl(@71(H))

The above two inequalities imply xgHzo = f],

IA I

[t (@7HG)) = [, (@7 (H))
flo)(@7HG) — @71 (H))
w(®7H(G) — @7 (H))

w(G —H)

W(U*(G — H)U)

1 —x{Huxo.

(®~1(H)).

ajo]

Lemma 3.15 Suppose ¢ : S(H,,) — S(H,,) is a surjective numerical radius isometry.
If for any Hy, Hy € S(H,), we have w(®(H;) — a®(H3)) < w(Hy —aHs) for all a € (0, +00),

then ® can be real linearly extended to numerical radius isometry ® of ‘H,, onto itself.

Proof We first show that for any H;, H> € S(H,) and « € (0,1), we have
w(Hy — aHs) =sup{w(H; — H) —w(H — aH,) : H € S(H,)}.
In fact, w(H; — aHy) > w(Hy — H) — w(H — aH>) for any H € S(H,,). So
w(Hy — aHy) > sup{w(Hy — H) —w(H — af) : H € S(H,)}.
Define ¢(t) = w(tH, + (1 — t)aHs), t € (—00,0]. Clearly, ¢(0) = a < 1 and

o(t) =w(t(Hy — aHy) + aHsy) > |tlw(Hy — aHs) — a — 400, (t — —00).

Then there exists ty < 0 such that ¢(tp) =1, i.e., G =toH; + a(l — tg)Hs € S(H,). Hence

w(H; — G) —w(G — aH,)

= w(H1 — toHl + O[(]. — tO)HQ) — W(toHl + Oé(]. — tO)HQ — CMHQ)
= W(Hl — OdHQ).

Thus w(H, — aHy) = sup{w(H; — H) —w(H — aHy) : H € S(H,)}.

Since @ is a surjective numerical radius isometry, we have

W(Hl - OZHQ)

= sup{w(H, — H) —w(H — aH,) : H € S(H,)}

< sup{w(®(H,) — ®(H)) —w(®(H) — a®(H,)) : H € S(H,)}

= Ww(®(H,) — ad(Hy)).

So w(®(H;) — a®(Hs)) = w(H; — aHy) for all Hy, Hy € H,,,« € (0,1).

For any H € H,, define

w(H) (), H #0;

w(H)
0, H=0



No. 6 Surjective numerical radius isometry on S(Hy) 1057

Clearly, w(®(H)) = w(H) and ®(a*H) = a*®(H),a* € [0,400). Thus, ® is surjective.
Finally, we show that for any Hy, Hy € H,,, we have w(®(H,) — ®(Hy)) = w(H, — Hs).
If H; = 0 or Hy =0, it is clear that w(®(H;) — ®(Hy)) = w(H; — Hs).
If H,H, € H,, Hy # 0,Hy # 0, without loss of generality we may assume that

w(H1) < w(H>), then

w(®(H,) — ®(Hy))

1 Hy
— w(w(Hl)q)(w(Hl)) W(H2)‘I)(w(H2))>
_ w(Hy) o Hi o
= w(H) (w(HQ)q)(w(Hl)) (I)(w(Hz)))
= w w w(Hy) Hy - Ho
— (Hz) (w(Hz) w(Hl) w(HQ))
= w(H1 - H2)

Hence @ : ‘H, — H, is a surjective numerical radius isometry. From Mazur-Ulam
Theorem [16], ® is a real linear numerical radius isometry of H,, onto itself with | Sty = P
since ®(0) = 0.

Theorem 3.16 @ : S(H,) — S(H,) is a surjective numerical radius isometry satis-
fying w(®(H;) — a®(Hs)) < w(H; — aH,) for all Hy,Hy € S(H,,) and «a € (0,+00) if and
only if there is a unitary matrix U € M,, and a real number pu € {—1,1} such that one of
the following is true:

(1) ®(H) = pUHU* for every H € S(H,,);

(2) ®(H) = pUH"U* for every H € S(H,,).

Proof It is obvious that every map of the form (1) and (2) is a surjective numerical
radius isometry satisfying w(®(H;) — a®(H,)) < w(H, — aHy) for all Hy, Hy, € S(H,,) and
a € (0,4+00). So we only to check the “only if” part.

By Lemma 3.15, ® can be real linearly extended to the whole space H,,. Using Theorem
2 in [1], there is a unitary matrix U € M,, and a real number p € {—1,1} such that one of
the following is true:

(1) ®(H) = pUHU* for every H € S(H,);

(2) ®(H) = pUH"U* for every H € S(H,,).
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