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Abstract: In this article, we study the numerical radius isometry on matrix spaces. By

using isometric embedding, we obtain surjective numerical radius isometry from the unit sphere

of self-adjoint matrix space onto itself can be real-linear extended to the whole space, and give a

method of Tingley isometric extension problem.
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1 Introduction

1.1 Linear Preserver Problems and Numerical Radius Isometry

Let Mn be the complex linear space of n×n (n ≥ 2) matrices over complex field C. Hn

be the real linear space of n× n self-adjoint matrices over C. Φ : Mn →Mn is a map (may
be non-linear). A general and interesting problem should been considered is as follows:

Problem 1.1 Find as few properties as possible that may be possessed by elements in
Mn or the subset of Mn and that are enough to determine the structure of the map Φ if Φ
takes these properties as invariants, i.e, if Φ preserves these properties.

When Φ is linear, the above problem is so-called linear preserver problems (LPP). The
study of LPP can be traced back to the work of Frobenius in [7] and become one of the
most active and fertile research fields in the matrix theory and operator theory during the
past decades (see the survey paper [14]). Many results concerning LPP reveal the relations
between linear structure and algebraic structure of operators algebras.

Problem 1.1 is also associated with the geometry of matrices whose study was initiated
by Hua in the 1940s (see [10–13]). Consider the group of motions on Mn consisting of the
following maps:

A 7→ PAQ + R, ∀A ∈Mn or A 7→ PAtrQ + R, ∀A ∈Mn,

where P and Q are n × n invertible matrices and R is an n × n matrix, Atrdenotes the
transpose matrix of A. The fundamental problem of geometry of matrices is to characterize
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the group of motions by as few geometry invariants as possible [20]. Hua proved that
“adjacency”(A and B are adjacent if rank(A−B) = 1) is such an invariant for Mn.

The numerical range and numerical radius of A ∈Mn are respectively defined as

W (A) = {〈Ax, x〉 : x ∈ S(Cn)} = {x∗Ax : x ∈ S(Cn)},
ω(A) = sup{|λ| : λ ∈ W (A)}.

These concepts and their generalizations were studied extensively because of their con-
nections and applications to many different areas. In [15], Li and S̆emrl fond that the
geometry invariant“numerical radius distance”alone is sufficient to characterize the non-
linear maps on upper triangular matrices. In [1], Bai and Hou fond that the geometry
invariant“numerical radius distance”alone is sufficient to characterize the non-linear maps
from B(H) onto B(K), where B(H) is Banach space of all bounded linear operators on
complex Hilbert space H. Precisely, it is shown that Φ : B(H) → B(K) is a surjective
numerical radius isometry, i.e, ω(Φ(T )−Φ(S)) = ω(T −S) holds for all T, S ∈ B(H), if and
only if there exists complex unit µ and operator R ∈ B(K) such that Φ takes one of the
following forms:

(a) There exists a unitary or conjugate unitary operator U : H → K such that

Φ(A) = µUAU∗ + R, ∀A ∈ B(H);

(b) There exists a unitary or conjugate unitary operator U : H → K such that

Φ(A) = µUA∗U∗ + R, ∀A ∈ B(H).

1.2 Isometric Extension Between the Unit Spheres of Banach Spaces

Let E and F be Banach spaces, a mapping T : E → F is said to be isometric if
‖T (x)− T (y)‖ = ‖x− y‖ for all x, y ∈ E.

In 1987, Tingley raised the following problem in [19]:
Problem 1.2 Let E and F be normed spaces with unit spheres S1(E) and S1(F ).

Suppose that V0 : S1(E) → S1(F ) is a surjective isometric mapping, is there a linear isometric
mapping V : E → F such that V |S1(E)= V0?

During the last two decades, many mathematicians have been engaged in Tingley’s
problem. This is a very nice mathematics problem since it is easy to understood but hard to
solve. Some mathematicians asked whether the problem can be solved completely for finite
dimensional Banach spaces. However, even in the case of two-dimensional Banach spaces,
there is still no answer. In [19], Tingley only proved if E and F are finite-dimensional Banach
spaces and V0 : S1(E) → S1(F ) is a surjective isometric mapping, then V0(−x) = −V0(x)
for all x ∈ S1(E).

During the last decade, many interesting results have been obtained on the above Tin-
gley’s problem. See [3, 4] and the survey paper [5]. All the results we mention above concern
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with isometries between the unit spheres of two Banach spaces of the same type. The first
paper in which the isometric extension problem between Banach spaces of different types is
consider in [2]. In that paper, isometric mappings from the unit sphere S1(E) to the unit
sphere of S1(C(Ω)) (where E is a general Banach space and Ω is a compact Hausdorff space)
is considered, and a condition concerning an inequality was given under which Tingley’s
problem has a positive answer. After two years, X.N. Fang in [6] obtained a generalization
that the more general inequality:

‖T (x)− λT (y)‖ ≤ ‖x− λy‖ (∀x, y ∈ S1(E),∀λ ∈ (0, 1))

is a sufficient condition for having a positive answer of the Tingley’s problem (where T is a
surjective isometry from S1(E) onto S1(F )).

Moreover, Fang and Wang obtained in [6] a positive answer in Tingley’s problem between
E and C(Ω) (where, Ω is a“metrizable”compact Hausdorff space), i.e., ‖T (x)− λT (y)‖ ≤
‖x− λy‖ holds for all x, y ∈ S1(E) and λ ∈ (0, 1) when E is a Banach space and F = C(Ω).
It is a beautiful result and obtained the above inequality by considering the unit spheres
S1(E∗) and S1(F ∗) of the dual spaces.

Tingley’s problem doesn’t make sense in complex spaces. A simple counterexample
E = F = C, V0(x) = x̄, (∀x ∈ C, |x| = 1) shows there indeed exists a negative answer.
However, any complex Banach space is also a real Banach space and any complex-linear
isometry is also a real-linear, and therefore we can consider the real linear isometric extension
between the real Banach spaces over the complex field C.

Note that if Φ is a surjective numerical radius isometry on Hn, let Ψ(H) = Φ(H)−Φ(0),
then ω(Ψ(H)) = ω(Φ(H)) for every H ∈ Hn and Ψ(0) = 0. Since numerical radius is a norm
on Hn, from Mazur-Ulam Theorem [16] that Ψ is real-linear. Consequently, we can assume
that Φ itself is real-linear.

In this paper, We try to characterize the group of motions (i.e., H 7→ PHQ or H 7→
PHtrQ) on the unit sphere S(Hn) = {H ∈ Hn : ω(H) = 1} of Hn which preservers the
“numerical radius distance”can determine the same type group of motions on the whole
space Hn and also can preserver the“numerical radius distance”. We obtain that surjective
numerical radius isometry Φ : S(Hn) → S(Hn) satisfying ω(Φ(H1)−αΦ(H2)) ≤ ω(H1−αH2)
for all H1,H2 ∈ S(Hn) and α ∈ (0,+∞) can be real-linear extended to the whole space Hn,
and furthermore, there is a unitary matrix U ∈ Mn and a real number µ ∈ {−1, 1} such
that one of the following is true:

(1) Φ(H) = µUHU∗ for every H ∈ S(Hn);
(2) Φ(H) = µUHtrU∗ for every H ∈ S(Hn).

2 The Isometric Embedding Map Between Mn and C(S(Cn))

Let Mn be the space of n× n (n ≥ 2) matrices over the complex field C and S(Cn) =
{x ∈ Cn : ‖x‖ = 1} be the unit sphere of Cn. The numerical range (also know as the filed of
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values) and numerical radius of A ∈Mn are defined, respectively, by

W (A) = {〈Ax, x〉 : x ∈ S(Cn)} = {x∗Ax : x ∈ S(Cn)},
ω(A) = sup{|λ| : λ ∈ W (A)}.

One may see [8] and chapter 1 in [9] for more information about numerical range and
numerical radius.

Lemma 2.1 [18] Let A ∈ Mn and ‖A‖ = sup{‖Ax‖ : x ∈ S(Cn)} be the operator
norm induced on Mn. Then

1
2
‖A‖ ≤ ω(A) ≤ ‖A‖.

Lemma 2.2 The numerical radius ω(·) is a norm on Mn and (Mn, ω(·)) is a Banach
space.

Proof For every A,B ∈Mn and λ ∈ C, we have
(a) ω(A) ≥ 0 is trivial. We only to check that ω(A) = 0 implies A = 0. By Lemma 2.1,

‖A‖ ≤ 2ω(A) = 0. So ‖A‖ = 0 and our claim follows.
(b) Absolute homogeneity.

ω(λA) = sup
‖x‖=1

|〈λAx, x〉| = |λ| sup
‖x‖=1

|〈Ax, x〉| = |λ|ω(A).

(c) Subadditivity.

ω(A + B) = sup
‖x‖=1

|〈(A + B)x, x〉| = sup
‖x‖=1

|〈Ax, x〉+ 〈Bx, x〉|

≤ sup
‖x‖=1

(|〈Ax, x〉|+ |〈Bx, x〉|) ≤ sup
‖x‖=1

|〈Ax, x〉|+ sup
‖x‖=1

|〈Bx, x〉| ≤ ω(A) + ω(B).

So the numerical radius ω(·) is a norm on Mn and (Mn, ω(·)) is a Banach space since
it is finite-dimensional.

Since the unit sphere of Cn, S(Cn) = {x ∈ Cn : ‖x‖ = 1} is a compact metric space,
C(S(Cn)) is a Banach space of all the continuous complex-value functions on the compact
metric space S(Cn).

Theorem 2.3 (Mn, ω(·)) is isometrically isomorphic to the closed complex-linear
subspace of C(S(Cn)).

Proof For each A ∈Mn, define fA : S(Cn) → C by

fA(x) = x∗Ax,∀x ∈ S(Cn).

It is easy to see that fA is continuous complex-value function on S(Cn). Then we get a
map A → fA from Mn to C(S(Cn)).

First we show that A → fA is a linear mapping from Mn to C(S(Cn)).
In fact, For any A,B ∈Mn and λ ∈ C, we have

fA+B(x) = x∗(A + B)x = x∗Ax + x∗Bx = fA(x) + fB(x) = (fA + fB)(x)



1048 Journal of Mathematics Vol. 34

and

fλA(x) = x∗(λA)x = λx∗Ax = λfA(x) = (λfA)(x),∀x ∈ S(Cn)

Next we show that A → fA is an isometric mapping from Mn to C(S(Cn)).

‖fA − fB‖ = sup{|(fA − fB)(x)| : x ∈ S(Cn)}
= sup{|fA(x)− fB(x)| : x ∈ S(Cn)} = sup{|x∗Ax− x∗Bx| : x ∈ S(Cn)}
= sup{|x∗(A−B)x| : x ∈ S(Cn)} = ω(A−B).

Hence {fA : fA(x) = x∗Ax,∀x ∈ S(Cn),∀A ∈ Mn} is a closed linear subspace of
C(S(Cn)) and A → fA is an isometric isomorphism from Mn onto {fA : fA(x) = x∗Ax,∀x ∈
S(Cn),∀A ∈Mn}.

We can easily get the similar conclusion on real-linear space (Hn, ω(·)).
Corollary 2.4 (Hn, ω(·)) is isometrically isomorphic to the closed real-linear subspace

of C(S(Cn)).

3 Numerical Radius Isometric Extension from S(Hn) onto Itself

3.1 The Properties of Numerical Radius Isometry from S(Mn) onto Itself

From Lemma 2.2, the space (Mn, ω(·)) is a Banach space, we write Mn instead of
(Mn, ω(·)) for convenience. A mapping Φ : Mn → Mn is a numerical radius isometry if
ω(Φ(A)−Φ(B)) = ω(A−B) for all A,B ∈Mn. Denote by S(Mn) = {A ∈Mn : ω(A) = 1}
the unit sphere of Mn.

Lemma 3.1 If A,B ∈ S(Mn) are real linearly independent such that αA + βB ∈
S(Mn) holds for some α, β ∈ R with α2 +β2 = 1, then condition (a) and (b) are equivalent.

(a) There exists a complex unit µ such that (A,B) = µ(I,±iI).
(b) For any rank one matrix A1 ∈ S(Mn), there are α, β ∈ R with α2 + β2 = 1 such

that ω(αA + βB + A1) = 1 + ω(A1).
Proof It is obvious that (a) implies (b).
Now assume (b) holds. For any x ∈ S(Cn) and θ ∈ [0, 2π). Let Aθ = eiθxx∗, it follows

from (b) that there are αθ, βθ ∈ R with α2
θ + β2

θ = 1 such that

ω(αθA + βθB + Aθ) = 1 + ω(Aθ) = 2,

which implies that there exists xθ ∈ S(Cn) such that

|x∗θ(αθA + βθB)xθ + x∗θAθxθ| = 2.

Since αθA + βθB ∈ S(Mn) and Aθ ∈ S(Mn), which implies that |x∗(αθA + βθB)x| ≤
1, |x∗Aθx| ≤ 1 for any x ∈ S(Cn). Hence

2 = |x∗θ(αθA + βθB)xθ + x∗θAθxθ| ≤ |x∗θ(αθA + βθB)xθ|+ |x∗θAθxθ| ≤ 2.
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So we have |x∗θ(αθA + βθB)xθ| = 1 and |x∗θAθxθ| = 1. From which we obtain xθ = x

since Aθ = eiθxx∗. So x∗θ(αθA + βθB)xθ = eiθ.

Suppose x∗Ax = α1 + iα2 and x∗Bx = β1 + iβ2 with α1, α2, β1, β2 ∈ R. Let C =(
α1 β1

α2 β2

)
∈M2(R). By above equation, for any θ ∈ [0, 2π), we have

x∗(αθA + βθB)x = x∗(αθA)x + x∗(βθB)x

= αθ(α1 + iα2) + βθ(β1 + iβ2)

= (α1αθ + β1βθ) + i(α2αθ + β2βθ)

= eiθ.

Now let uθ = (αθ, βθ)tr then uθ ∈ S(R2) and

Cuθ =

(
α1 β1

α2 β2

)(
αθ

βθ

)
=

(
cos θ

sin θ

)
= (cos θ, sin θ)tr.

Hence C maps the unit ball in R2 onto itself, and thus C is an isometry on R2 with the form

C =

(
cos t − sin t

sin t cos t

)
∈M2(R) or C =

(
cos t sin t

sin t − cos t

)
∈M2(R).

It follows that x∗Ax = α1 + iα2 is a complex unit and x∗Bx = ±ix∗Ax = x∗(±iA)x.

Since x ∈ S(Cn) is arbitrary, we see that B = ±iA, together with the convexity of
W (A), implies that A = µI for some complex unit µ. Hence (A,B) = µ(I,±iI).

Lemma 3.2 Suppose Φ : S(Mn) → S(Mn) is a surjective numerical radius isometry.
If Φ(αI + βiI) = αΦ(I) + βΦ(iI) for all α, β ∈ R with α2 + β2 = 1, then (Φ(I),Φ(iI)) =
µ(I,±iI)) for some complex unit µ, and consequently, Φ(λI) = µλI or Φ(λI) = µλ̄I for all
complex unit λ.

Proof It is easy to check that real linearly independent pair (I, iI) satisfying ω(αI +
βiI) = 1, i.e., αI + βiI ∈ S(Mn) for all α, β ∈ R with α2 + β2 = 1 and condition (b) of
Lemma 3.1, that is ω(αI + βiI + A1) = 1 + ω(A1).

Since Φ : S(Mn) → S(Mn) is a surjective numerical radius isometry, it follows that

ω(αΦ(I) + βΦ(iI) + Φ(A1)) = ω(Φ(αI + βiI)− Φ(−A1))

= ω(αI + βiI + A1)

= 1 + ω(A1)

= 1 + ω(Φ(A1)).

From Lemma 3.1, condition (a) holds, that is (Φ(I),Φ(iI)) = µ(I,±iI).
Hence Φ(λI) = µλI or Φ(λI) = µλ̄I for all complex unit λ.
Theorem 3.3 Suppose Φ : S(Mn) → S(Mn) is a surjective numerical radius isometry.

If Φ(αI + βiI) = αΦ(I) + βΦ(iI) for all α, β ∈ R with α2 + β2 = 1, then W (Φ(A)) =
W (µA),∀A ∈ S(Mn) for some complex unit µ.
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Proof By Lemma 3.2, there have two cases.
Case 1 Φ(λI) = µλI.
Assume that there exists γ ∈ C such that γ ∈ W (Φ(A))\W (µA). Then there is a circle

with sufficient large radius and centered at a certain complex unit λ such that W (A) lies
inside the circle, but γ lies outside the circle. Hence

ω(µA− λI) < |γ − λ| ≤ ω(Φ(A)− λI) = ω(Φ(A)− Φ(µ̄λI)) = ω(A− µ̄λI) = ω(µA− λI),

which is a contradiction. So W (Φ(A)) ⊆ W (µA). Using the argument to Φ−1, we obtain
that W (µA) ⊆ W (Φ(A)).

Case 2 Φ(λI) = µλ̄I.
Assume that there exists γ ∈ C such that γ ∈ W (Φ(A))\W (µA). Then there is a circle

with sufficient large radius and centered at a certain complex unit λ̄ such that W (A) lies
inside the circle, but γ lies outside the circle. Hence

ω(µA− λ̄I) < |γ − λ̄| ≤ ω(Φ(A)− λ̄I) = ω(Φ(A)− Φ(µ̄λ̄I)) = ω(A− µ̄λ̄I) = ω(µA− λ̄I).

Which is a contradiction. So W (Φ(A)) ⊆ W (µA). Using the argument to Φ−1, we
obtain that W (µA) ⊆ W (Φ(A)). So W (Φ(A)) = W (µA) for all A ∈ S(Mn).

3.2 Numerical Radius Isometric Extension from S(Hn) onto Itself

In this section, we turn to consider real linear space Hn of self-adjoint matrices over
complex field C.

Let us start using some notation and terminology that will be used throughout the
section. The space (Hn, ω(·)) is a Banach space. We write Hn instead of (Hn, ω(·)) for
convenience. The unit sphere of Hn is S(Hn) = {H ∈ Hn : ω(H) = 1} and the unit ball
of Hn is B(Hn) = {H ∈ Hn : ω(H) ≤ 1}. The dual space of Hn will be denoted by
(Hn)∗. Notice that the norm on (Hn)∗ is defined as ‖f∗‖ = sup{|f∗(H)| : H ∈ S(Hn)}. Let
H ∈ S(Hn), we set St(H) = {G ∈ S(Hn) : ω(H + G) = 2}.

To discuss the numerical radius isometry of S(Hn), we define the following relation C
borrowed from [21].

Definition 3.4 [21] For H1,H2 ∈ Hn, H1 is said to be smaller than H2 (denoted by
H1 CH2) if ω(H1 +H) = ω(H1)+ω(H) implies ω(H2 +H) = ω(H2)+ω(H) for all H ∈ Hn.

The relation C has the following properties:
Lemma 3.5 [21] For any H1,H2,H ∈ Hn, we have
(1) H1 C H2 =⇒ ∀k1, k2 > 0, k1H1 C k2H2;
(2) H1 C H2 =⇒ ω(H1 + H2) = ω(H1) + ω(H2);
(3) H1 CH2 ⇐⇒ ω(H1 +H) = ω(H1)+1 implies ω(H2 +H) = ω(H2)+1,∀H ∈ S(Hn).
Lemma 3.6 [21] Suppose Φ : S(Hn) → S(Hn) is a surjective numerical radius isometry.

Then for any H1,H2 ∈ S(Hn), H1 C H2 ⇐⇒ Φ(H1) C Φ(H2).
Corollary 3.7 Suppose Φ : S(Hn) → S(Hn) is a surjective numerical radius isometry.

Then for any H1,H2 ∈ S(Hn), ω(H1 + H2) = 2 ⇐⇒ ω(Φ(H1) + Φ(H2)) = 2.
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Proof If ω(H1 + H2) = 2, then there exists x0 ∈ Cn with ‖x0‖ = 1 such that

ω(H1) = |x∗0H1x0| = ω(H2) = |x∗0H2x0| = 1.

For every m ∈ N, put Gm = (1 − 1
m

)H1 + 1
m

H2. Then ω(Gm) = ω((1− 1
m

)H1 + 1
m

H2) ≤ 1
and |x∗0Gmx0| = |x∗0((1 − 1

m
)H1 + 1

m
H2)x0| = 1. Hence Gm ∈ S(Hn) and Gm → H1 as

m →∞, i.e., ω(Gm −H1) → 0.

We assert that Gm C H2.

Suppose that ω(Gm + H) = ω(Gm) + ω(H) = 2 for some H ∈ S(Hn), then there exists
f∗ ∈ S((Hn)∗) such that f∗(Gm + H) = ω(Gm + H) = 2. Since |f∗(Gm)| ≤ 1, |f∗(H)| ≤ 1,
we have f∗(Gm) = f∗(H) = 1. It follows that f∗(H1) = f∗(H2) = f∗(H) = 1. Hence
2 = f∗(H2 + H) ≤ ω(H2 + H) ≤ 2, which implies that ω(H2 + H) = 2. By Lemma 3.5 (3),
we obtain Gm C H2.

From Lemma 3.6, we have Φ(Gm)CΦ(H2). Hence by Lemma 3.5 (2), we get ω(Φ(Gm)+
Φ(H2)) = ω(Gm) + ω(H2) = 2. Because ω(Φ(Gm)−Φ(H1)) = ω(Gm −H1) → 0 as m →∞,
thus ω(Φ(H2) + Φ(H1)) = lim

m→∞
ω(Φ(H2) + Φ(Gm)) = 2.

For the converse, we only to substitute Φ with Φ−1 in the above proof since Φ−1 also is
an onto numerical radius isometry.

Definition 3.8 For x, y ∈ Cn, we say x is equivalent to y (denoted by x ∼ y) if y = eiθx

for some θ in [0, 2π). The equivalent class of x is denoted by [x] = {eiθx : ∀θ ∈ [0, 2π)}.
For each x0 ∈ S(Cn) and θ0 ∈ [0, 2π), define three sets:

NRA([x0]) = {H ∈ S(Hn) : |x∗0Hx0| = 1},
NRA([x0], 1) = {H ∈ S(Hn) : x∗0Hx0 = 1},
NRA1([x0], 1) = {H ∈ S(Hn) : x∗0Hx0 = 1 and |x∗Hx| < 1,∀x ∈ S(Cn) \ [x0]}.

Next we give some properties of NRA([x0], 1) and NRA1([x0], 1).

Remark 1 S(Hn) separates the points of S(Cn/ ∼), i.e., If x, y ∈ S(Cn) and [x] 6= [y],
then there exists H ∈ S(Hn) such that x∗Hx 6= y∗Hy.

Proof If x, y ∈ S(Cn) and [x] 6= [y], Then x 6= y. There must exists 1 ≤ k ≤
n, k ∈ N, xk, yk ∈ C such that xk 6= yk (where xk and yk is the kth component of x and y,
respectively).

Case 1 If |xk| 6= |yk|, take H = diag(0, · · · , 0, 1
kth

, 0, · · · , 0), clearly H ∈ S(Hn) and

x∗Hx = |xk|2, y∗Hy = |yk|2. Then x∗Hx 6= y∗Hy;

Case 2 If |xk| = |yk|, then there exists λ ∈ C with |λ| = 1 such that xk = λyk.
Together with the hypothesis of [x] 6= [y], there exists 1 ≤ l ≤ n, l ∈ N, l 6= k, xl, yl ∈ C such
that xl = µyl with µ 6= λ (where xl and yl is the lth component of x and y, respectively).

Subcase 2a If |xl| 6= |yl|, Take H = diag(0, · · · , 0, 1
lth

, 0, · · · , 0);

Subcase 2b If |xl| = |yl|, then |µ| = 1 and µ 6= λ such that xl = µyl.
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Take

G =




. . . . .
.

0 · · · ȳkyl

...
...

ykȳl · · · 0

. .
. . . .




(where G = (gij) is n×n matrix with gkl = ykȳl, glk = ylȳk and gij = 0, (i, j) 6= (k, l), (l, k)).
Then H = G

ω(G)
∈ S(Hn) and x∗Hx = 2

ω(G)
|ykyl|2<(λµ̄) (where <(λµ̄) denote the

real part of λµ̄ ∈ λµ̄), y∗Hy = 2
ω(G)

|ykyl|2. It easy to check that x∗Hx 6= y∗Hy since
λ, µ ∈ C, λ 6= µ, |λ| = |µ| = 1.

Hence if [x] 6= [y], then there exists H ∈ S(Hn) such that x∗Hx 6= y∗Hy for all x ∈ [x]
and y ∈ [y].

Remark 2 NRA1([x0], 1) 6= ∅.
Proof For each x0 ∈ S(Cn), x0x

∗
0 ∈ NRA1([x0], 1).

Remark 3 Let x0 ∈ S(Cn), then for any H[x0] ∈ NRA1([x0], 1), we have St(H[x0]) =
NRA([x0], 1) and NRA([x0], 1) is a closed convex subset of S(Hn).

Proof Let x0 ∈ S(Cn) and H[x0] ∈ NRA1([x0], 1), then for any H ∈ St(H[x0]), we
have

2 = ω(H + H[x0]) = sup{|x∗Hx + x∗H[x0]x| : x ∈ S(Cn)}
≤ sup{|x∗Hx| : x ∈ S(Cn)}+ sup{|x∗H[x0]x| : x ∈ S(Cn)} = 2.

It follows that x∗0Hx0 = 1 and H ∈ NRA([x0], 1). Hence St(H[x0]) ⊆ NRA([x0], 1).
Conversely, for any H ∈ NRA([x0], 1), we have ω(H + H[x0]) = 2 for every H[x0] ∈

NRA1([x0], 1)). It follows that H ∈ St(H[x0]). Hence St(H[x0]) ⊇ NRA([x0], 1).
For any H1,H2 ∈ NRA([x0], 1) and t ∈ [0, 1], we have x∗0((1 − t)H1 + tH2)x0 = 1 and

ω((1 − t)H1 + tH2) ≤ (1 − t)ω(H1) + tω(H2) = 1, which implies that (1 − t)H1 + tH2 ∈
NRA([x0], 1). Hence NRA([x0], 1) is convex.

Suppose {Gm} ⊆ NRA([x0], 1)(m ∈ N) such that Gm → H as m → ∞, i.e., ω(Gm −
H) → 0, then H ∈ S(Hn) since |ω(Gm)−ω(H)| ≤ ω(Gm−H) → 0 and ω(Gm) = 1(∀m ∈ N).
Therefore, from |x∗0Gmx0−x∗0Hx0| ≤ sup{|x∗Gmx−x∗Hx| : x ∈ S(Hn)} = ω(Gm−H) → 0,
we have x∗0Hx0 = 1. Hence H ∈ NRA([x0], 1) and NRA([x0], 1) is closed.

Lemma 3.9 Suppose Φ : S(Hn) → S(Hn) is a surjective numerical radius isometry.
Then for any x0 ∈ S(Cn) and H[x0] ∈ NRA1([x0], 1), we have

Φ−1(NRA([x0], 1)) = St(Φ−1(H[x0])).

Proof For any H ∈ Φ−1(NRA([x0], 1)) and Φ(H) ∈ NRA([x0], 1), we have

ω(Φ(H) + H[x0]) = 2.
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By Corollary 3.7, we have
ω(H + Φ−1(H[x0])) = 2,

hence H ∈ St(Φ−1(H[x0])).
Conversely, for any H[x0] ∈ NRA1([x0], 1) and H ∈ St(Φ−1(H[x0])), we have ω(H +

Φ−1(H[x0])) = 2. By Corollary 3.7, ω(Φ(H) + H[x0]) = 2, namely,

Φ(H) ∈ St(H[x0]) = NRA([x0], 1).

Therefore, H = Φ−1(Φ(H)) ∈ Φ−1(NRA([x0], 1)).
Thus Φ−1(NRA([x0], 1)) = St(Φ−1(H[x0])) for any H[x0] ∈ NRA1([x0], 1).
Lemma 3.10 Suppose Φ : S(Hn) → S(Hn) is a surjective numerical radius isometry.

Then for any x0 ∈ S(Cn), Φ−1(NRA([x0], 1)) is a closed convex subset of S(Hn).
Proof Let H[x0] ∈ NRA1([x0], 1) be fixed. By Lemma 3.9, we have

ω(Φ−1(H[x0]) + H1) = ω(Φ−1(H[x0]) + H2) = 2

for any H1,H2 ∈ Φ−1(NRA([x0], 1)). Take f∗1 ∈ S((Hn)∗) such that

f∗1 (Φ−1(H[x0]) + H1) = ω(Φ−1(H[x0]) + H1) = 2.

Therefore, we have f∗1 (Φ−1(H[x0])) = f∗1 (H1) = 1 since |f∗1 (Φ−1(H[x0]))| ≤ 1 and |f∗1 (H1)| ≤
1. Hence

2 = f∗1 (Φ−1(H[x0]) +
1
2
(Φ−1(H[x0]) + H1)) ≤ ω(Φ−1(H[x0]) +

1
2
(Φ−1(H[x0]) + H1)) ≤ 2.

So ω(Φ−1(H[x0]) + 1
2
(Φ−1(H[x0]) + H1)) = 2. This means that

1
2
(Φ−1(H[x0]) + H1) ∈ St(Φ−1(H[x0]) = Φ−1(NRA([x0], 1)).

So Φ( 1
2
(Φ−1(H[x0]) + H1)) ∈ NRA([x0], 1). From the assumption of Φ(H2) ∈ NRA([x0], 1)

and the convexity of NRA([x0], 1), it is easy to get ω(Φ( 1
2
(Φ−1(H[x0]) + H1)) + Φ(H2)) = 2.

Thus from Corollary 3.7, we have

ω(
1
2
(Φ−1(H[x0]) + H1) + H2) = 2.

Choose f∗2 ∈ S((Hn)∗) such that f∗2 ( 1
2
(Φ−1(H[x0]) + H1) + H2) = 2. This implies that

f∗2 (Φ−1(H[x0])) = f∗2 (H1) = f∗2 (H2) = 1. Hence

2 = f∗2 (Φ−1(H[x0]) +
1
2
(H1 + H2)) ≤ ω(Φ−1(H[x0]) +

1
2
(H1 + H2)) ≤ 2.

So ω(Φ−1(H[x0]) + 1
2
(H1 + H2)) = 2. It follows that

1
2
(H1 + H2) ∈ St(Φ−1(H[x0])) = Φ−1(NRA([x0], 1)).
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Therefore, Φ−1(NRA([x0], 1)) is a convex subset.
Since Φ−1 is continuous and NRA([x0], 1) is closed, Φ−1(NRA([x0], 1)) is a closed

subset.
Lemma 3.11 Suppose Φ : S(Hn) → S(Hn) is a surjective numerical radius isometry.

Then for any x ∈ S(Cn), there exists f∗[x] ∈ S((Hn)∗) such that f∗[x](Φ
−1(NRA([x], 1))) = 1

(i.e., f∗[x](H) = 1, if H ∈ Φ−1(NRA([x], 1))).
Proof By Lemma 3.10, Φ−1(NRA([x], 1)) is a closed convex subset of the surface

of unit ball B(Hn). Hence Φ−1(NRA([x], 1)) does not meet the interior of B(Hn). By
Eidelheit Separation Theorem [17], there exists f∗[x] ∈ S((Hn)∗) such that f∗[x](H) = 1 for all
H in Φ−1(NRA([x], 1)).

Now, for any x ∈ S(Cn), take f∗[x] ∈ S((Hn)∗) to be fixed as described in Lemma 3.10,
then we obtain a map: [x] −→ f∗[x], x ∈ S(Cn).

Lemma 3.12 The map [x] −→ f∗[x], x ∈ S(Cn) is injective.
Proof Let x, y ∈ S(Cn), [x] 6= [y]. Suppose f∗[x] = f∗[y], then for any H[x] ∈ NRA1([x], 1)

and H[y] ∈ NRA1([y], 1), we have

1 = f∗[x](Φ
−1(H[x])) = f∗[y](Φ

−1(H[x])) = f∗[y](Φ
−1(H[y])).

Hence
2 = f∗[y](Φ

−1(H[x]) + Φ−1(H[y])) ≤ ω(Φ−1(H[x]) + Φ−1(H[y])) ≤ 2.

It implies that ω(Φ−1(H[x]) + Φ−1(H[y])) = 2. Which contradicts with

ω(Φ−1(H[x]) + Φ−1(H[y])) = ω(H[x] + H[y]) < 2

since [x] 6= [y].
Lemma 3.13 Suppose Φ : S(Hn) → S(Hn) is a surjective numerical radius isometry.

If H ∈ NRA([x]), then there exists f∗[x] ∈ S((Hn)∗) such that f∗[x](Φ
−1(H)) = x∗Hx.

Proof If x∗Hx = 1, then H ∈ NRA([x], 1). By Lemma 3.11, there exists f∗[x] ∈
S((Hn)∗) such that f∗[x](Φ

−1(H)) = 1 = x∗Ax.
If x∗Hx = −1, then −H ∈ NRA([x], 1). Hence for any H[x] ∈ NRA1([x], 1), we have

ω(Φ−1(H)− Φ−1(H[x])) = ω(H −H[x]) = ω(−H + H[x]) = 2.

It follows that −Φ−1(H) ∈ St(Φ−1(H[x]) = Φ−1(NRA([x], 1)). By Lemma 3.11, there exists
f∗[x] ∈ S((Hn)∗) such that f∗[x](−Φ−1(H)) = 1. Hence f∗[x](Φ

−1(H)) = −1 = x∗Hx.
Theorem 3.14 Suppose Φ : S(Hn) → S(Hn) is a surjective numerical radius isometry.

If x ∈ S(Cn) is an eigenvector of H ∈ S(Hn), then there exists f∗[x] ∈ S((Hn)∗) such that

f∗[x](H) = x∗(Φ(H))x

or
f∗[x](Φ

−1(H)) = x∗Hx.
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Proof Let {x1, x2, · · · , xn} ⊆ S(Cn) be pairwise orthogonal eigenvectors of H cor-
responding to eigenvalues µ1, µ2, · · · , µn arranged in descending order. Then µi ∈ R with
−1 ≤ µi ≤ 1 for all 1 ≤ i ≤ n and either µ1 = 1 or µn = −1 for every self-adjoint matrix
H ∈ S(Hn) (see [8, 9, 18]).

Assume x0 is a eigenvector corresponding to eigenvalue µk (1 ≤ k ≤ n) of H, then
µk = x∗0Hx0. Take

G± = (1∓ µk)xkx
∗
k ±

n∑
i=1

µi(xix
∗
i )

and

U = (x1, · · · , xk−1, xk, xk+1, · · · , xn),

where

G+ = (1− µk)xkx
∗
k +

n∑
i=1

µi(xix
∗
i )

and

G− = (1 + µk)xkx
∗
k −

n∑
i=1

µi(xix
∗
i ).

It is easy to check that

G± ∈ S(Hn),

x∗0G
±x0 = x∗kG

±xk = 1,

U∗G±U = diag{±µ1, · · · ,±µk−1, 1,±µk+1, · · · ,±µn},
U∗HU = diag{µ1, · · · , µk−1, µk, µk+1, · · · , µn}.

Hence G± ∈ NRA([x0], 1). By Lemma 3.13, we have f∗[x0]
(Φ−1(G±)) = 1 and

1∓ f∗[x0]
(Φ−1(H)) = f∗[x0]

(Φ−1(G±))∓ f∗[x0]
(Φ−1(H))

= f∗[x0]
(Φ−1(G±)∓ Φ−1(H))

≤ ω(Φ−1(G±)∓ Φ−1(H))

= ω(G± ∓H)

= ω(U∗(G± ∓H)U)

= 1∓ µk

= 1∓ x∗0Hx0.

The above two inequalities imply x∗0Hx0 = f∗[x0]
(Φ−1(H)).

Therefore G ∈ NRA([x0], 1). By Lemma 3.13, we have

f∗[x0]
(Φ−1(G)) = 1
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and

1− f∗[x0]
(Φ−1(H)) = f∗[x0]

(Φ−1(G))− f∗[x0]
(Φ−1(H))

= f∗[x0]
(Φ−1(G)− Φ−1(H))

≤ ω(Φ−1(G)− Φ−1(H))

= ω(G−H)

= ω(U∗(G−H)U)

= 1− x∗0Hx0.

The above two inequalities imply x∗0Hx0 = f∗[x0]
(Φ−1(H)).

Lemma 3.15 Suppose Φ : S(Hn) → S(Hn) is a surjective numerical radius isometry.
If for any H1,H2 ∈ S(Hn), we have ω(Φ(H1)−αΦ(H2)) ≤ ω(H1−αH2) for all α ∈ (0,+∞),
then Φ can be real linearly extended to numerical radius isometry Φ̃ of Hn onto itself.

Proof We first show that for any H1,H2 ∈ S(Hn) and α ∈ (0, 1), we have

ω(H1 − αH2) = sup{ω(H1 −H)− ω(H − αH2) : H ∈ S(Hn)}.

In fact, ω(H1 − αH2) ≥ ω(H1 −H)− ω(H − αH2) for any H ∈ S(Hn). So

ω(H1 − αH2) ≥ sup{ω(H1 −H)− ω(H − αH2) : H ∈ S(Hn)}.

Define φ(t) = ω(tH1 + (1− t)αH2), t ∈ (−∞, 0]. Clearly, φ(0) = α < 1 and

φ(t) = ω(t(H1 − αH2) + αH2) ≥ |t|ω(H1 − αH2)− α → +∞, (t → −∞).

Then there exists t0 < 0 such that φ(t0) = 1, i.e., G = t0H1 + α(1− t0)H2 ∈ S(Hn). Hence

ω(H1 −G)− ω(G− αH2)

= ω(H1 − t0H1 + α(1− t0)H2)− ω(t0H1 + α(1− t0)H2 − αH2)

= ω(H1 − αH2).

Thus ω(H1 − αH2) = sup{ω(H1 −H)− ω(H − αH2) : H ∈ S(Hn)}.
Since Φ is a surjective numerical radius isometry, we have

ω(H1 − αH2)

= sup{ω(H1 −H)− ω(H − αH2) : H ∈ S(Hn)}
≤ sup{ω(Φ(H1)− Φ(H))− ω(Φ(H)− αΦ(H2)) : H ∈ S(Hn)}
= ω(Φ(H1)− αΦ(H2)).

So ω(Φ(H1)− αΦ(H2)) = ω(H1 − αH2) for all H1,H2 ∈ Hn, α ∈ (0, 1).
For any H ∈ Hn, define

Φ̃(H) =

{
ω(H)Φ( H

ω(H)
), H 6= 0;

0, H = 0.
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Clearly, ω(Φ̃(H)) = ω(H) and Φ̃(α+H) = α+Φ̃(H), α+ ∈ [0,+∞). Thus, Φ̃ is surjective.
Finally, we show that for any H1,H2 ∈ Hn, we have ω(Φ̃(H1)− Φ̃(H2)) = ω(H1 −H2).
If H1 = 0 or H2 = 0, it is clear that ω(Φ̃(H1)− Φ̃(H2)) = ω(H1 −H2).
If H1,H2 ∈ Hn, H1 6= 0,H2 6= 0, without loss of generality we may assume that

ω(H1) ≤ ω(H2), then

ω(Φ̃(H1)− Φ̃(H2))

= ω(ω(H1)Φ(
H1

ω(H1)
)− ω(H2)Φ(

H2

ω(H2)
))

= ω(H2)ω(
ω(H1)
ω(H2)

Φ(
H1

ω(H1)
)− Φ(

H2

ω(H2)
))

= ω(H2)ω(
ω(H1)
ω(H2)

H1

ω(H1)
− H2

ω(H2)
)

= ω(H1 −H2).

Hence Φ̃ : Hn → Hn is a surjective numerical radius isometry. From Mazur-Ulam
Theorem [16], Φ̃ is a real linear numerical radius isometry of Hn onto itself with Φ̃|S(Hn) = Φ
since Φ̃(0) = 0.

Theorem 3.16 Φ : S(Hn) → S(Hn) is a surjective numerical radius isometry satis-
fying ω(Φ(H1) − αΦ(H2)) ≤ ω(H1 − αH2) for all H1,H2 ∈ S(Hn) and α ∈ (0,+∞) if and
only if there is a unitary matrix U ∈ Mn and a real number µ ∈ {−1, 1} such that one of
the following is true:

(1) Φ(H) = µUHU∗ for every H ∈ S(Hn);
(2) Φ(H) = µUHtrU∗ for every H ∈ S(Hn).
Proof It is obvious that every map of the form (1) and (2) is a surjective numerical

radius isometry satisfying ω(Φ(H1)− αΦ(H2)) ≤ ω(H1 − αH2) for all H1,H2 ∈ S(Hn) and
α ∈ (0,+∞). So we only to check the“only if”part.

By Lemma 3.15, Φ can be real linearly extended to the whole space Hn. Using Theorem
2 in [1], there is a unitary matrix U ∈ Mn and a real number µ ∈ {−1, 1} such that one of
the following is true:

(1) Φ(H) = µUHU∗ for every H ∈ S(Hn);
(2) Φ(H) = µUHtrU∗ for every H ∈ S(Hn).
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S(Hn)上的满数值半径等距

李 兵, 夏爱生, 胡宝安

(军事交通学院基础部,天津 300161)

摘要: 本文研究了矩阵空间到自身的满数值半径等距问题. 利用等距嵌入方法, 获得了自共轭矩阵空

间单位球面到自身的满数值半径等距可实线性延拓至全空间上的满数值半径等距, 为Tingley等距延拓问题

提供了一种方法.
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