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Abstract: In this paper, we present a strong Chernoff bounds by using the existence of small

sized equitable colorings of graphs. The case we considered here is for sums of random variables

with dependence. Our result improves the known results as far as we known.
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1 Introduction

In 1952, Chernoff in [3] introduced a technique that gave sharp upper bounds on the
tail of the distribution of binary independent random variables. Since then, Chernoff bounds
are coming to be the fundamental tools used in bounding the tail probabilities of the sums
of bounded and the distribution of binary independent random variables. And the bounds
have many different expressions under distinct settings. As the bound is so important, we
list it as a theorem.

Theorem A Let X = {X1, X2, · · · , Xn} be a set of n mutually independent binary

random variables. Let S =
n∑

i=1

Xi and µ = E[S]. For 0 < ε,

Pr(S ≤ µ(1− ε)) ≤ e−
µε2

2 (1.1)

and
Pr(S ≥ µ(1 + ε)) ≤ (eε(1 + ε)−(1+ε))µ. (1.2)

By the Chernoff’s technique, one can obtain a better and more efficient evaluation of the
bounds on the tail probabilities. The following theorem can be found in Alon and Spencer’s
book [1].
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Theorem B Let S be a random variable with Poisson distribution and E(S) = µ. For
any ε > 0, we have the following inequalities:

Pr(S ≤ µ(1− ε)) ≤ e−
µε2

2 (1.3)

and
Pr(S ≥ µ(1 + ε)) ≤ (eε(1 + ε)−(1+ε))µ. (1.4)

By Theorem B, one can find good applications if a good bound on the tail probability of
S is obtained. For instance, Schmidt, Siegel and Srinivasan [9] obtained a bound on the tail
probability of S, when the Xi’s are k-wise independent for k smaller than a certain function
of n, ε and µ. k-wise independence means that any k-subset of X contains mutually inde-
pendent random variables. An important idea for deriving the bounds on the tail probability
of S when the Xi’s are not mutually independent involved the theory of martingales by the
so-called Azuma-Hoeffding inequality.

A dependence graph G(V, E) for a set of random variables X = {X1, X2, · · · , Xn} is a
graph with vertex set V = {X1, X2, · · · , Xn} and the edge set E such that for each edge
XiXj , Xi and Xj are not mutually independent. For any non-negative integer d, we say
that the exhibit d-bounded dependence, if {X1, X2, · · · , Xn} have a dependence graph with
maximum vertex degree d. The notion of dependence graph is used widely in random graphs
and random algorithms, for more detailed information, refer to [1, 5, 6, 10]. Recall that the
notion of a dependence graph of random variables is also used from the hypothesis of the
Lovász’s local lemma.

Let g+(µ, ε) = eµε · (1 + ε)−µ(1+ε) and g−(µ, ε) = e−µε2/2.
Pemmaraju showed the following results in [7, 8].
Theorem C Let X = {X1, X2, · · · , Xn} be a set of n identically distributed binary

random variables with a d-bounded dependence graph. S =
n∑

i=1

Xi and µ = E(S). For any

ε, 0 < ε ≤ 1, the following holds:

Pr(S ≤ µ(1 + ε)) ≤ 4(d + 1)
e

· g+(µ, ε)
1

d+1 (1.5)

and
Pr(S ≥ µ(1− ε)) ≤ 4(d + 1)

e
· g−(µ, ε)

1
d+1 . (1.6)

An equitable t-coloring of a graph G is a proper t-coloring for which any two color class
differ in size by at most one. The notion of equitable colorings of graphs is used in the
proof of the above result. Lemma 1 was a conjecture of Erdös and showed by Hajnal and
Szemerédi in [4]. Lemma 2 was showed by B. Bollabós and Guy in [2].

Lemma 1 A graph G with maximum degree ∆ has a ∆ + 1-equitable coloring.
Lemma 2 A tree T with n vertices is equitably 3-colorable if n ≥ 3∆(T ) − 8 or

n = 3∆(T )− 10.
Here we also use Lemma 1 as in [7] to derive bounds on the tail probabilities of the

sums of binary independent random variables. The structure of the paper is as follows. In
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Section 2, we give two results on the bounds on the tail probabilities of the sums of binary
independent random variables. Section 3 contains the main result and its proof. With an
application of Lemma 2, a good bound will be followed.

2 Preliminaries

Theorems 1 and 2 are two results on the bounds on the tail probabilities of the sums of
binary independent random variables. Theorem 1 is stronger than the Chernoff bounds in
some sense and independent of n. Theorem 2 is stronger than the Chernoff bounds for some
k and λ and easy for computation. Both will be used in next section.

Lemma 3 Let λ be a non-negative real number and k be a non-negative integer such
that (k − λ)2 > k. If x ≥ k and x > λ > 0, then we have

F (x) =
x + 1− λ

x + 1− k
·
( x

x + 1

)x

·
(

x + 1− λ

x− λ

)(x−k)

> 1. (2.1)

Proof Let A(x) = (x + 1− λ)/(x + 1− k), B(x) = ( x
x+1

)x and C(x) = (x+1−λ
x−λ

)(x−k).
And then

A′(x) =
(

1 +
k − λ

x + 1− k

)′
=

λ− k

(x + 1− k)2
, (2.2)

B′(x) = B(x) ·
{

ln
x

1 + x
+

1
1 + x

}
(2.3)

and

C ′(x) = C(x) ·
{

ln
x + 1− λ

x− λ
− x− k

x + 1− λ
· 1
x− λ

}
. (2.4)

So, we have the following:

F ′(x) = B(x)C(x)

{A′(x) + A(x){ln x

1 + x
+

1
1 + x

+ ln(1 +
1

x− λ
)− x− k

(x + 1− λ)(x− λ)
}}

= B(x)C(x)

{A′(x) + A(x){ln(1 +
λ

(x + 1)(x− λ)
) +

1
x + 1

− x− k

(x + 1− λ)(x− λ)
}}

(2.5)

by ln x
1+x

+ ln(1 + 1
x−λ

) = ln(1 + λ
(x+1)(x−λ)

).
Let

G(x) = (x + 1− k)2 · F ′(x)
B(x)C(x)

= (x + 1− k)2

·{A′(x) + A(x){ln(1 +
λ

(x + 1)(x− λ)
) +

1
x + 1

− x− k

(x + 1− λ)(x− λ)
}}.(2.6)
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By x ≥ 0 and ln(1 + x) ≤ x, we have

G(x) ≤ (x + 1− k)2

·{ λ− k

(x + 1− k)2
+

x + 1− λ

x + 1− k
· { λ

(x + 1)(x− λ)
+

1
x + 1

− x− k

(x + 1− λ)(x− λ)
}}

= (x + 1− k)2 · { λ− k

(x + 1− k)2
+

x + 1− λ

x + 1− k
· { x

(x− λ)(x− λ)
− x− k

(x + 1− λ)(x− λ)
}}

=
(λ− k)(x + 1)(x− λ)

(x + 1)(x− λ)
+

x(x + 1− k)(x + 1− λ)
(x + 1)(x− λ)

− (x− k)(x + 1− k)(x + 1)
(x− λ)(x + 1)

=
(k − (k − λ)2)x + (λ + 1)k − k2 − λ2

(x + 1)(x− λ)
. (2.7)

By k < (λ− k)2, we have the following:

(λ + 1)k − k2 − λ2 < (λ + 1)k − (k + 2kλ) = −kλ ≤ 0. (2.8)

For 0 < λ < x, we have

(k − (k − λ)2)x + (λ + 1)k − k2 − λ2 < 0. (2.9)

So F ′(x) < 0.
Note that lim

x→+∞
A(x) = 1, lim

x→+∞
B(x) = e−1 and lim

x→+∞
C(x) = e1, and then lim

x→+∞
F (x) =

1, so we have F (x) > 1.
Lemma 4 Let BIN(n, λ/n) be the sum of n independent Bernoulli variables, each of

which is equal to 1 with probability λ/n and 0 otherwise. Let k be a non-negative integer
such that (k − λ)2 > k. Then we have

BIN(k;n, λ/n) <
λke−λ

k!
, (2.10)

where BIN(k;n, λ/n) = Pr(BIN(n, λ/n) = k).
Proof By Lemma 3, we have

BIN(k;n + 1, λ/(n + 1))
BIN(k;n, λ/n)

=

(
n+1

k

)
(

n
k

) ·
(

λ/(n + 1)
λ/n

)k

· (1− λ/(n + 1))n+1−k

(1− λ/n)n−k

=
n + 1− λ

n + 1− k
·
( n

n + 1

)n

·
(

n + 1− λ

n− λ

)n−k

= F (n) > 1. (2.11)

Note that lim
n→+∞

BIN(k;n, λ/n) = λke−λ

k!
. And then we have the conclusion.

Lemma 5 Let BIN(n, λ/n) be the sum of n independent Bernoulli variables, each of
which is equal to 1 with probability λ/n and 0 otherwise. Let (k − λ)2 > k, where k is a
non-negative integer and 0 < λ < n. Then we have the following:

1. If k < λ, then

Pr(BIN(n, λ/n) ≤ k) <

k∑
i=0

λie−λ

i!
. (2.12)
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2. If k > λ, then

Pr(BIN(n, λ/n) ≥ k) <

+∞∑
i=k

λie−λ

i!
. (2.13)

Proof It follows immediately from Lemma 4.
Lemma 6 Let BIN(n, λ/n) be the sum of n independent Bernoulli variables, each of

which is equal to 1 with probability λ/n and 0 otherwise. Let (k − λ)2 > k，where k is a
non-negative integer and 0 < λ < n. Then we have the following:

1. If k < λ, then

Pr(BIN(n, λ/n) ≤ k) <
λk+1e−λ

(λ− k)k!
, (2.14)

2. If k > λ, then

Pr(BIN(n, λ/n) ≥ k) <
k + 1

(k + 1− λ)
· λke−λ

k!
. (2.15)

Proof 1. If n > λ > k ≥ m, then

BIN(m− 1;n, λ/n)
BIN(m;n, λ/n)

=
(n− λ)m

(n−m + 1)λ
≤ m

λ
≤ k

λ
. (2.16)

By Lemma 4, for 0 ≤ i ≤ k,

BIN(i;n, λ/n) ≤
(

k

λ

)k−i

· BIN(k;n, λ/n)

and

1 +
k

λ
· · ·+

(
k

λ

)k

=
1− (k/λ)k+1

1− k/λ
<

λ

λ− k
. (2.17)

And so

Pr(BIN(n, λ/n) ≤ k) ≤ λ

λ− k
BIN(k;n, λ/n) <

λk+1e−λ

(λ− k) · k!
.

2. If 0 < λ < k ≤ m, then

BIN(m + 1;n, λ/n)
BIN(m;n, λ/n)

=
(n−m)λ

(n− λ)(m + 1)
≤ λ

m + 1
≤ λ

k + 1
. (2.18)

By Lemma 4, for k ≤ i ≤ n,

BIN(i;n, λ/n) ≤
(

λ

k + 1

)i−k

· BIN(k;n, λ/n)

and

1 +
λ

k + 1
· · ·+

(
λ

k + 1

)n−k

=
1− (λ/(k + 1))n−k+1

1− λ/(k + 1)
<

k + 1
k + 1− λ

. (2.19)

And then,

Pr(BIN(n, λ/n) ≥ k) ≤ k + 1
k + 1− λ

BIN(k;n, λ/n) <
(k + 1)λke−λ

(k + 1− λ) · k!
.
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Clearly, the results of Theorems 1 and 2 are stronger than those of Theorems A and B
and easier to handle.

3 Main Results

Let X = {X1, X2, · · · , Xn} be a set of n binary random variables and G(V, E) be the
dependence graph associated with X. Assume that G admits a t-equitable coloring and
C1, C2, · · · , Ct be the color classes of the coloring. Then we have two different ways to add
restrictions with the elements of X, which are Models 1 and 2.

Model 1 The sum of the expected value of Xi’s is a constant. For any color class Ci,
1 ≤ i ≤ n, elements of Ci are identical distribution.

Model 2 The sum of the expected value of Xi’s is a constant and E(Xi) = E(Xj) for
1 ≤ i < j ≤ n.

Lemma 7 Let X = {X1, X2, · · · , Xn} be a set of n binary random variables with
dependence graph G(V, E). Suppose that G can be colored equitably with at most t colors.
For (k − t− µ)2 > kt− t2, k − t > µ > 0, we have upper tail probability

Pr(S ≥ k) <

+∞∑

i≥ k
t−1

µie−µ/t

t(i−1)i!
; (3.1)

For (k + t− µ)2 > kt + t2, k + t < µ < dn/te, we have the lower tail probability

Pr(S ≤ k) <

k
t +1∑
i=0

µie−µ/t

t(i−1)i!
. (3.2)

Proof We distinguish two cases.
Model 1 Let C1, C2, · · · , Ct be the t colors classes in a t-equitable-coloring of G. For

each j ∈ {1, 2, · · · , t} and i ∈ Cj , let E(
∑

i∈Cj
Xi) = µ/t, and E(Xi) = µ/(t|Cj |). We now

rewrite the event S ≥ k as follows.
S ≥ k is equivalent to S ≥ k

n
· n, which is equivalent to

S ≥ k

n
·
∑

i∈[t]

|Ci| ≡
∑

i∈[t]

∑
j∈Ci

Xj ≥
∑

i∈[t]

k

n
· |Ci|. (3.3)

For ∑

i∈[t]

∑
j∈Ci

Xj ≥
∑

i∈[t]

k

n
· |Ci| ⇒ ∃i ∈ [t] :

∑
j∈Ci

Xj ≥ k

n
· |Ci|. (3.4)

Hence
Pr(

∑

i∈[t]

∑
j∈Ci

Xj ≥
∑

i∈[t]

k

n
· |Ci|) ≤ Pr(∃i ∈ [t] :

∑
j∈Ci

Xj ≥ k

n
· |Ci|) (3.5)

for
Pr(

∑
j∈Ci

Xj ≥ k

n
· |Ci|) ≤ Pr(

∑
j∈Ci

Xj ≥ k

t
− 1). (3.6)
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So

Pr(∃i ∈ [t] :
∑
j∈Ci

Xj ≥ k

n
· |Ci|) ≤ t Pr(

∑
j∈Ci

Xj ≥ k

t
− 1) (3.7)

for (k − t− µ)2 > kt− t2, k − t > µ > 0, by Theorem 1, we have

Pr(
∑
j∈Ci

Xj ≥ k

t
− 1) <

∑

i≥ k
t−1

µie−µ/t

tii!
.

So Pr(S ≥ k) <
∑

i≥ k
t−1

µie−µ/t

ti−1i!
.

Model 2 Let C1, C2, · · · , Ct be the t colors classes in a t-equitable-coloring of G. Let

S =
n∑

i=1

Xi, E(Xi) = µ/n

for 1 ≤ i ≤ n.
We now rewrite the event S ≥ k as follows:
S ≥ k is equivalent to S ≥ k

n
· n, which is equivalent to

S ≥ k

n
·
∑

i∈[t]

|Ci|. (3.8)

For ∑

i∈[t]

∑
j∈Ci

Xj ≥
∑

i∈[t]

k

n
· |Ci| ⇒ ∃i ∈ [t] :

∑
j∈Ci

Xj ≥ k

n
· |Ci|. (3.9)

Hence

Pr(
∑

i∈[t]

∑
j∈Ci

Xj ≥
∑

i∈[t]

k

n
· |Ci|) ≤ Pr(∃i ∈ [t] :

∑
j∈Ci

Xj ≥ k

n
· |Ci|). (3.10)

Let m = bn/tc, we have

Pr(
∑

j∈Ci,|Ci|=m

Xj ≥ k

t
− 1) ≥ Pr(

∑
j∈Ci

Xj ≥ k

n
|Ci|). (3.11)

So

Pr(∃i ∈ [t] :
∑
j∈Ci

Xj ≥ k

n
· |Ci|) ≤

∑

j∈[t]

Pr(
∑
j∈Ci

Xj ≥ k

n
|Ci|) ≤ t Pr(

∑

j∈Ci,|Ci|=m

Xj ≥ k

t
− 1).

(3.12)
Since

∑
j∈Ci,|Ci|=m

Xj ∼ b(m,µ/n), for k > µ/t, we have

Pr(
∑

j∈Ci,|Ci|=m

Xj = k) ≤
(

m

k

)
(

µ

mt
)k(1− µ

mt
)m−k (3.13)
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for (k − t− µ)2 > kt− t2, k − t > µ > 0, by Theorem 1, we have

Pr(
∑

j∈Ci,|Ci|=m

Xj ≥ k

t
− 1) <

∑

i≥ k
t−1

µie−µ/t

tii!
.

So Pr(S ≥ k) <
∑

i≥ k
t−1

µie−µ/t

ti−1i!
.

This completes the proof of upper tail probability bound. The proof of the lower tail
probability bound is similar and omitted.

Lemma 8 Let X = {X1, X2, · · · , Xn} be a set of n binary random variables with
dependence graph G(V, E). Suppose that G can be colored equitably with at most t colors.
If n/t is an integer，Then for (k − µ)2 > kt, k > µ > 0, we have upper tail probability

Pr(S ≥ k) <
∑

i≥ k
t

µie−µ/t

ti−1i!
; (3.14)

for (k − µ)2 > kt, k < µ < n/t, we have lower tail probability

Pr(S ≤ k) <

k
t∑

i=0

µie−µ/t

ti−1i!
. (3.15)

Theorem 1 Let X = {X1, X2, · · · , Xn} be a set of n binary random variables with
dependence graph G(V, E). Let d be the maximum degree of G. If

(k − d− 1− µ)2 > (d + 1)(k − d− 1)

and k − d− 1 > µ > 0, then the upper tail probability is as follows:

Pr(S ≥ k) <

+∞∑

i≥ k
d+1−1

µie−µ/(d+1)

(d + 1)(i−1)i!
. (3.16)

If (k + d + 1− µ)2 > (d + 1)(k + d + 1) and k + d + 1 < µ < dn/(d + 1)e, then the lower tail
probability is as follows:

Pr(S ≤ k) <

k
d+1+1∑

i=0

µie−µ/(d+1)

(d + 1)(i−1)i!
. (3.17)

Actually, if n/(d + 1) is an integer, for (k − µ)2 > k(d + 1) and k > µ > 0, then

Pr(S ≥ k) <

+∞∑

i≥ k
d+1

µie−µ/(d+1)

(d + 1)(i−1)i!
; (3.18)

for (k − µ)2 > k(d + 1) and k < µ < n/(d + 1), then

Pr(S ≤ k) <

k
d+1∑
i=0

µie−µ/(d+1)

(d + 1)(i−1)i!
. (3.19)



No. 6 A strong Chernoff bounds derived from equitable colorings of graphs 1023

Proof Let G be the dependence graph of with maximum vertex degree d such that a
dependence graph exists by definition of d-bounded dependence. By Lemma 1, G has a d+1-
equitable coloring. Replacing t by (d + 1) in Lemmas 7 and 8 yields the desired bounds.

Note that Lemmas 5 and 6 are special cases of Theorem 1.
The strength of the equitable coloring technique in deriving tail probability bounds lies

in the fact that it allows us to focus closely on the structure of the dependence graph. In
particular, a small equitable chromatic number for a dependence graph leads to sharp tail
probability bounds. Not much seems to be known about the equitable chromatic number
of different graph classes. The connection between equitable colorings and tail probability
bounds presented.

The following result comes ready-made from Bollobás and Guy [2]. Lemma 2 essentially
implies that if ∆(T ) ≤ n/3, then T can be equitably 3-colored. This immediately translates
to the following tail probability bounds on tree structured dependence graphs.

Theorem 2 Let X = {X1, X2, · · · , Xn} be a set of n identical random variables that
have a tree structured dependence graph with maximum degree no greater than n/3. Then

we have the following bounds of the tail probabilities of the sum S =
n∑

i=1

Xi of the Xi’s as

follows:
if (k − 3− µ)2 > 3(k − 3), k − 3 > µ > 0, then

Pr(S ≥ k) <
∑

i≥ k
3−1

µie−µ/3

3i−1i!
; (3.20)

if (k + 3− µ)2 > 3(k + 3), k + 3 < µ < dn/3e, then

Pr(S ≤ k) <

k
3 +1∑
i=0

µie−µ/3

3i−1i!
. (3.21)
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由均匀染色导出的强Chernoff界

王 涛1, ,刘明菊2,李德明3

(1.华北科技学院基础部, 河北三河 065201)
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摘要: 本文研究了相关变量的Chernoff问题. 利用相关变量构造图的方法, 利用均匀染色的结果, 获得

了更强的Chernoff界, 推广了Chernoff不等式在相关随机变量的不等式下的界.
关键词: 均匀染色; 相关图; Chernoff界
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