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Abstract: A lower bound for the minimum eigenvalue for the Fan product of nonsingular
M-matrices A and B and an upper bound for the spectral radius of Hadamard product of non-
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1 Introduction

For a positive integer n, N denotes the set {1,2,--- ,n}. The set of all n x n complex
matrices is denoted by C™*"™ and R"*™ denotes the set of all n X n real matrices.

We let Z,, denote the class of all n x n real matrices all of whose off-diagonal entries are
nonpositive. An n x n matrix A is called an M-matrix if there exists an n X n nonnegative
matrix B and a nonnegative real number A such that A = A\l — B and A > p(B), I is the
identity matrix; if A\ > p(B), we call A a nonsingular M-matrix; if A = p(B), we call A a
singular M-matrix. Denote by M,, the set of nonsingular M-matrices.

Let A € Z,, and 7(A) =min{Re(\) : A € 0(A)}. Basic for our purpose are the following
simple facts (see Problems 16,19 and 28 in Section 2.5 of [1] ):

(1) 7(A) € 0(A); 7(A) is called the minimum eigenvalue of A.

(2) If A,B € M,,, and A > B, then 7(A) > 7(B).

(3) If A E M,,, then p(A~1) is the Perron eigenvalue of the nonnegative matrix A~!,
A

and 7(A) = 1) is a positive real eigenvalue of A.
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Let A, B € C™*". The Fan product of A and B is denoted by A% B = C = (¢;;) € C™*"
and is defined by

—Gijbm if i # 7,
Cij =
a;ibii, iti=j.
If A,B € M,, then so is A% B. In [1-3], the following bounds for 7(A¥ B) are given
for two nonsingular M-matrices A and B, respectively.

(A% B) > 7(A)7(B),
T(A%B) > (1 — p(Ja)p(JB)) Iillinn(aiibii),
T(A%B) > I%lil {auT(B) + bym(A) — 7(A)T(B)}.

Recently, Li [4] gave a sharper lower bound for 7(A¥ B), that is

. |bk1|
7(A%B) > min {a;;b;; — m;
( }2 min{ ; }-
Let A = (aij) c C™"™ and B = (bU) € C™*". We write A Z B(> B) if Qi Z b”(> bzy)
for all i,7 € {1,2,---,n}. If 0 is the null matrix and A > 0(> 0), we say that A is a
nonnegative (positive) matrix. The spectral radius of A is denoted by p(A). If A is a
nonnegative matrix, the Perron-Frobenius theorem guarantees that p(A) is an eigenvalue of

A.

An n x n matrix A is reducible if there exists a permutation matrix P such that

B 0

PTAP = |
C D

I,

where B, D are square matrices of order at least one. If A is not reducible, then it is called
irreducible. Note that any 1 x 1 matrix is irreducible.

For two real matrices A = (a;;) and B = (b;;) of the same size, the Hadamard product
of A and B is Ao B = (a;;bij).

In [1-3], the following bounds for p(A o B) are given for A, B > 0, respectively.

p(Ao B) < p(A)p(B),
p(AoB) < (1+p(Jap(Jp))) max aiibii,
P(A o B) Iélag {QCL”b“ + p(A)p(B) - aiiP<B) - biip(A)}'

Recently, Li [4] gave a sharper upper bound for p(A o B), that is

bkz
< b, .
p(AoB) < 121%};{@,1% +m; E }

k‘;é’L
In this paper, we give a new lower bound on 7(A¥ B) for two matrices A, B € M, in
Section 2 and a new upper bound on p(A o B) for two nonnegative matrices A and B in
Section 3. Some examples are given to illustrate our results.
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In the following, we will need the notations:

Ri=> lau|, di= Rf, i€ N;
k#i
.. dj7 dj 7é 0,
mji = lagilhy, mi =max{m}, i,j €N, hj= { L4 =0
2 A Lower Bound for the Minimum Eigenvalue of the Fan Product of
M-Matrices

In this section, we will give a lower bound for 7(A% B). In order to prove our results,

we first give some lemmas.
Lemma 2.1 [5] Let A = (a;;) € C™*™. Then all the eigenvalues of A lie in the region:

n
Uel:lz—aullz—ayl <> lawsl Y layl}-

Ehe ki I#j
Lemma 2.2 Let A = (a;;) € C™" and let 1,25, -+, x, be positive real numbers.

Then all the eigenvalues of A lie in the region:

n
1 1
U zeClz—aullz —ayl < (@i ) —lawl)(; 3 —lai])}-
Q=1 ki 1#j
i#£]
Proof Letzy, 2, - ,x, be positive real numbers, and define X =diag(zy, 2, - ,2,), B =

(b;j) = X 'AX. Then we have

X xT
a1 i e Mg
T ZTn
2, 221 a22 ER— 777}
— xT T

B=(b;)=X"'AX=| ™ 2

X X

ianl ian,Q e Ann

Since B = X' AX, we have that 0(A) = o(B). By Lemma 2.1, there exists a pair(i, 5)
for positive integers with i # j such that

n

U {zeCilz=billz = bl <Y 1bral > b1}

ij=1 ki 1#§
iy #i #J
Observe that
T Zj
ai; = by, aj; =bj;, b= —aw, by = —ay.
Tk Xy

Thus, we have

=1 ki I#j
iy #i #Jj
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That is

n

1 1
Ufzec:lz—aullz—a;l < (@ —laril)(z; > —lai}-
e ki E Er

Theorem 2.1 Let A, B € R™*" be two nonsingular M-matrices. Then

1 |bkz| |bl 1
T(A%B) > Igﬁljn §{aiibii + a;;ibj; — [(aibi — aj; bm) + 4(m ; ; == 2} (2.1)
i j

Proof It is evident that (2.1) is an equality for n = 1.

We next assume that n > 2.

If A% B is irreducible, then A and B are irreducible. Let A be an eigenvalue of A% B
and satisfy 7(A%B) = A, so that 0 < A < ayby, Vi € N. Thus, by Lemma 2.2, there is a
pair (7, j) of positive integers with ¢ # j such that

1 1
I = aiballA —ajbyl < (mi Y —lanibiil) (m; > Elazjszl)

wti R 125
(i Z |akibki|)(m'z |aljblj|)
' — |agi|hy " |a;|

= e Y By, Yo

ki 1]

IN

Thus, we have

1 |bkz |bl 1
A > i{aiibii + ajjbjj - [(aubn a”b”) + 4 Z Z = 2 )
k#i I#]j

That is

1 bri b 1
T(A*B) > §{aiibii + Cljjbjj — [(CL”b“ ajjbjj) + 4 Z | k Z | lJ 2
k#i l#7

. 1 |bkz |bl 1
> rzgéljn 5{(1”17” + Cljjbjj — [(a“b” a”b”) + 4 kZ# Z L ¥AE 2

Now, assume that A¥ B is reducible. It is well known that a matrix in Z,, is a nonsin-
gular M-matrix if and only if all its leading principal minors are positive(see condition (E17)
of Theorem 6.2.3 of [6] ). If we denote by D = (d;;) the n X n permutation matrix with
dis =dss = -+ = dp_1, = dp1 = 1, the remaining d;; zero, then both A —tD and B —tD
are irreducible nonsingular M-matrices for any chosen positive real number ¢, sufficiently
small such that all the leading principal minors of both A — tD and B — tD are positive.
Now we substitute A —tD and B — tD for A and B, respectively in the previous case, and
then letting ¢ — 0, the result follows by continuity.
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Theorem 2.2 Let A, B € R™™" be two nonsingular M-matrices. Then

1 |b"” |bl :
Tgéljn §{a“bi¢ + ajjbjj — [(a“b“ a]JbJj) + 4 kzﬂ Z L AN 2

b
> min {a;;b; — mlzm}

1<i<n

Proof Without loss of generality, for i # j, assume that

b
an i1 mzz | i < a]] 7] m]Z | l] (22)

k#i I#j

Thus, (2.2) is equivalent to

bri
Z |b zj| mey |hkk| by — auibi. (2.3)

1#£] ki

From (2.1) and (2.3), we have

1 |bkz| |bl | 1
§{aiibii +ajibi; — [(asbi — aJJbJJ) + 4(m Z Z - ) J2
k#i I#5

Y

1
§{an‘bu‘ +a;;bj; — [(aibi — ajjbjj)2

+4(m; Z |hk ‘)(mz Z hkk + aj;bj; — aibi;)]? }

ti Ok ki

1
= Slaibis + ajibj; — [(@iibi — aj5b;;)°

Z'b'” + 4(m Z'b’” assbs; — aisbii)] )

k#i k#i
! |bkz|
= §{aiibii +aj;b;; — [(aj;bj; — aiibi; +2m; Z }
ki b
bk:z
- {a“b“ T 4y bJJ (aJJbJJ ai;bi; + 2m; Z ‘ hy

k#i

_ |bkz
= au i — 1

k#1

Thus, we have

1 bri b 1
(A% B) > rgjr_li{aiibn + a;;b;5 — [(@ibi — a;;b;;)% + 4(m Z' b Z | “ 17}
k#i

v

1<i<n

b
min {a;;b; —m; Z |h’;|}
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Example 2.1 Let
4 -1 -1 -1 1 —-05 0 0
-2 -1 -1 —0. 1 —0.
e 5 7 B 0.5 05 0
0o -2 4 -1 0 —-05 1 -0.5
-1 -1 -1 4 0 0 —0.5 1
Then
4 =05 0 0
-1 5 —-05 0
A% B =
* -1 4  -0.5
0 0 -05 4
By calculating with Matlab 7.0, we have 7(A% B) = 3.2296. By Theorem 3.1 in [4], we
have

b
? k

ki

} = 2.4333.

By Theorem 2.1 in this paper, we have

1

(A% B) > Igjrl§{aiibii+ajjbjj — [(@iibi; — a;;b;5)°
|bri 16| 1y

+Hm; Y e )(ijTl)] } =2.9779.

ki I1#5

This numerical example shows that the result in Theorem 2.1 is better than that in

Theorem 3.1 in [4].

3 An Upper Bound for the Spectral Radius of the Hadamard Product
of Nonnegative Matrices

In this section, we will give an upper bound for p(A o B).
Theorem 3.1 Let A, Be€ R**™, A>0and B> 0. Then

1
p(AoB) < max §{aiibm + aj;bi; + [(@ibi — aj;b;;)°

i#]

Hme 3 2 my 37 1, (3.1

wti Ok 125

Proof Tt is evident that (3.1) is an equality for n = 1.
We next assume that n > 2.
If Ao B is irreducible, then A and B are irreducible. Let A be an eigenvalue of Ao B

and satisfy p(A o B) = A, so that p(Ao B) > a;b;;, Vi € N. Thus, by Lemma 2.2, there is a
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pair (7, j) of positive integers with ¢ # j such that

1 1
A= aisbiil[A = aybi) < (miy m7k|akibki|)(mj > Elaljblﬂ)

ki 125
< Z |a,ﬂb,ﬂ Z |aljblj|>
- akz 12 CLljhl
- (miZ%(ij%

Kt hi 125 ha

Thus, we have

1 b bij 1
A< Slaabi +agby; + [(aibi — a5b55) +4(m > 7o)m > }TZ)] 2}

ki F 125
That is
1 2 bri bij\q1
p(A o B) < g{aiibii + ajibj; + [(aiibi — aj5b5;)" +4(m; > hfk)(mj > E)] 2}
ki 1]

1 bki bl' 1
< max o faibi +aj;b;5 + [(aiibi - aj5bi;)” +4(mi Y 7-)(m; > hfj)] 2}
ki 1#j

Now, assume that A o B is reducible. If we denote by D = (d;;) the n x n permutation
matrix with di = do3 = --- = dy—1,, = d,;1 = 1, the remaining d,; zero, then both A + tD
and B +tD are nonsingular irreducible matrices for any chosen positive real number ¢. Now
we substitute A 4+ ¢tD and B + tD for A and B, respectively in the previous case, and then
let t — 0, the result follows by continuity.

Theorem 3.2 Let A,Be R"*", A>0and B > 0. Then

b bri1
max - {a“b” + a;jbj; + [(@ibi — ajjbjj)2 +4(m; Z hi)(mj Z - )] 2}

i#i 2 wti K 125
bri
< b, — L
11£1ax {an i M ; I
1

Proof Without loss of generality, for i # j, assume that

bri by
aiibi; +my e > a;;bj; +m; Z U (3.2)
ki 7
Thus, (3.2) is equivalent to
b bri
m] Z lj h,i =+ Cl”b“ ajjbjj. (33)

l#7 k:;éz
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From (3.1) and (3.3), we have

glaubis + ajibi; + [(aibis — aj5bi;)° + 4(ms > hik)(mj > h%)] 2}
ki 14

IN

1
§{anbii + a;;bj; + [(aibi; — aj;bj;)?

b Z b 7 1
+4(m Z . ZLWLC‘“ i — a4;b55)]2 }

k#i k#i
1
= laibii + ajbj; + [(aibi — a;;b;5)?

b i b i 1
FAm; Y 2 4 d(mg ) (@i — azibi;)] 2}
hk hk

ki ki
bri\oq1
= —{aiibi; + a;;bj; + [(aiibi; — a;;bj; +2m; Z h )22}
hti |k
bkz

1 .
= laubii + ajbj; + (aibii — ajjby; + 2m > 7o)
ki

bri
= aubn +m; Z ' .
k#i

Thus, we have

1 by b1
p(AoB) < max {aubi + ajb; + [(aibi — aj;b;)? +4(mi > ) (my Y 22))7}

i#j 2 h h
i oy k 125 l
by
< — .
>~ lrgzax {aubn + m; Z hk
ki
Example 3.1 Let
4 1 1 1 11 00
2 5 1 1 1 2
A= ’ B 3 0
0 2 4 1 01 4 3
1 1 1 4 0 015
Then
4 1 0 O
2 1 2
AoB = o 0
0 2 16 3
0 1 20

By calculating with Matlab 7.0, we have p(A o B) = 20.7439. By Theorem 4.1 in [4],

we have

p(Ao B) < max{a;b; +m; Z %} =23.2.
7 k

k#i
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By Theorem 3.1 in this paper, we have

i#]

1
p(A @) B) S max i{a”b“ + ajjbjj + [(a”b” — ajjbjj)2

Fam, 3 %)(mj 3 ZZZ')}%} — 21.865.

ki 1#£]

This numerical example shows that the result in Theorem 3.1 is better than that in
Theorem 4.1 in [4].
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