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1 Introduction

For a positive integer n, N denotes the set {1, 2, · · · , n}. The set of all n × n complex
matrices is denoted by Cn×n and Rn×n denotes the set of all n× n real matrices.

We let Zn denote the class of all n×n real matrices all of whose off-diagonal entries are
nonpositive. An n× n matrix A is called an M -matrix if there exists an n× n nonnegative
matrix B and a nonnegative real number λ such that A = λI − B and λ ≥ ρ(B), I is the
identity matrix; if λ > ρ(B), we call A a nonsingular M -matrix; if λ = ρ(B), we call A a
singular M -matrix. Denote by Mn the set of nonsingular M -matrices.

Let A ∈ Zn and τ(A) =min{Re(λ) : λ ∈ σ(A)}. Basic for our purpose are the following
simple facts (see Problems 16, 19 and 28 in Section 2.5 of [1] ):

(1) τ(A) ∈ σ(A); τ(A) is called the minimum eigenvalue of A.
(2) If A,B ∈ Mn, and A ≥ B, then τ(A) ≥ τ(B).
(3) If A ∈ Mn, then ρ(A−1) is the Perron eigenvalue of the nonnegative matrix A−1,

and τ(A) = 1
ρ(A−1)

is a positive real eigenvalue of A.
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Let A,B ∈ Cn×n. The Fan product of A and B is denoted by AFB ≡ C = (cij) ∈ Cn×n

and is defined by

cij =

{
−aijbij , if i 6= j,

aiibii, if i = j.

If A,B ∈ Mn, then so is AFB. In [1–3], the following bounds for τ(AFB) are given
for two nonsingular M -matrices A and B, respectively.

τ(AFB) ≥ τ(A)τ(B),

τ(AFB) ≥ (1− ρ(JA)ρ(JB)) min
1≤i≤n

(aiibii),

τ(AFB) ≥ min
1≤i≤n

{aiiτ(B) + biiτ(A)− τ(A)τ(B)}.

Recently, Li [4] gave a sharper lower bound for τ(AFB), that is

τ(AFB) ≥ min
1≤i≤n

{aiibii −mi

∑
k 6=i

|bki|
hk

}.

Let A = (aij) ∈ Cn×n and B = (bij) ∈ Cn×n. We write A ≥ B(> B) if aij ≥ bij(> bij)
for all i, j ∈ {1, 2, · · · , n}. If 0 is the null matrix and A ≥ 0(> 0), we say that A is a
nonnegative (positive) matrix. The spectral radius of A is denoted by ρ(A). If A is a
nonnegative matrix, the Perron-Frobenius theorem guarantees that ρ(A) is an eigenvalue of
A.

An n× n matrix A is reducible if there exists a permutation matrix P such that

P T AP = [
B 0
C D

],

where B,D are square matrices of order at least one. If A is not reducible, then it is called
irreducible. Note that any 1× 1 matrix is irreducible.

For two real matrices A = (aij) and B = (bij) of the same size, the Hadamard product
of A and B is A ◦B = (aijbij).

In [1–3], the following bounds for ρ(A ◦B) are given for A,B ≥ 0, respectively.

ρ(A ◦B) ≤ ρ(A)ρ(B),

ρ(A ◦B) ≤ (1 + ρ(J ′Aρ(J ′B))) max
1≤i≤n

aiibii,

ρ(A ◦B) ≤ max
1≤i≤n

{2aiibii + ρ(A)ρ(B)− aiiρ(B)− biiρ(A)}.

Recently, Li [4] gave a sharper upper bound for ρ(A ◦B), that is

ρ(A ◦B) ≤ max
1≤i≤n

{aiibii + mi

∑
k 6=i

bki

hk

}.

In this paper, we give a new lower bound on τ(AFB) for two matrices A,B ∈ Mn in
Section 2 and a new upper bound on ρ(A ◦ B) for two nonnegative matrices A and B in
Section 3. Some examples are given to illustrate our results.
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In the following, we will need the notations:

Ri =
∑
k 6=i

|aik|, di =
Ri

|aii| , i ∈ N ;

mji = |aji|hj , mi = max
j 6=i

{mji}, i, j ∈ N, hj =

{
dj , dj 6= 0,

1, dj = 0.

2 A Lower Bound for the Minimum Eigenvalue of the Fan Product of

M-Matrices

In this section, we will give a lower bound for τ(AFB). In order to prove our results,
we first give some lemmas.

Lemma 2.1 [5] Let A = (aij) ∈ Cn×n. Then all the eigenvalues of A lie in the region:

n⋃
i,j=1
i6=j

{z ∈ C : |z − aii||z − ajj | ≤
∑
k 6=i

|aki|
∑
l 6=j

|alj |}.

Lemma 2.2 Let A = (aij) ∈ Cn×n and let x1, x2, · · · , xn be positive real numbers.
Then all the eigenvalues of A lie in the region:

n⋃
i,j=1
i6=j

{z ∈ C : |z − aii||z − ajj | ≤ (xi

∑
k 6=i

1
xk

|aki|)(xj

∑
l 6=j

1
xl

|alj |)}.

Proof Let x1, x2, · · · , xn be positive real numbers, and define X =diag(x1, x2, · · · , xn), B =
(bij) = X−1AX. Then we have

B = (bij) = X−1AX =




a11
x2
x1

a12 · · · xn

x1
a1n

x1
x2

a21 a22 · · · xn

x2
a2n

...
...

. . .
...

x1
xn

an1
x2
xn

an2 · · · ann




.

Since B = X−1AX, we have that σ(A) = σ(B). By Lemma 2.1, there exists a pair(i, j)
for positive integers with i 6= j such that

n⋃
i,j=1
i6=j

{z ∈ C : |z − bii||z − bjj | ≤
∑
k 6=i

|bki|
∑
l 6=j

|blj |}.

Observe that
aii = bii, ajj = bjj , bki =

xi

xk

aki, blj =
xj

xl

alj .

Thus, we have
n⋃

i,j=1
i6=j

{z ∈ C : |z − aii||z − ajj | ≤ (
∑
k 6=i

xi

xk

|aki|)(
∑
l 6=j

xj

xl

|alj |)}.
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That is
n⋃

i,j=1
i6=j

{z ∈ C : |z − aii||z − ajj | ≤ (xi

∑
k 6=i

1
xk

|aki|)(xj

∑
l 6=j

1
xl

|alj |)}.

Theorem 2.1 Let A,B ∈ Rn×n be two nonsingular M -matrices. Then

τ(AFB) ≥ min
i 6=j

1
2
{aiibii + ajjbjj − [(aiibii − ajjbjj)2 + 4(mi

∑
k 6=i

|bki|
hk

)(mj

∑
l 6=j

|blj |
hl

)]
1
2 }. (2.1)

Proof It is evident that (2.1) is an equality for n = 1.
We next assume that n ≥ 2.
If AFB is irreducible, then A and B are irreducible. Let λ be an eigenvalue of AFB

and satisfy τ(AFB) = λ, so that 0 < λ < aiibii, ∀i ∈ N . Thus, by Lemma 2.2, there is a
pair (i, j) of positive integers with i 6= j such that

|λ− aiibii||λ− ajjbjj | ≤ (mi

∑
k 6=i

1
mk

|akibki|)(mj

∑
l 6=j

1
ml

|aljblj |)

≤ (mi

∑
k 6=i

|akibki|
|aki|hk

)(mj

∑
l 6=j

|aljblj |
|alj |hl

)

= (mi

∑
k 6=i

|bki|
hk

)(mj

∑
l 6=j

|blj |
hl

).

Thus, we have

λ ≥ 1
2
{aiibii + ajjbjj − [(aiibii − ajjbjj)2 + 4(mi

∑
k 6=i

|bki|
hk

)(mj

∑
l 6=j

|blj |
hl

)]
1
2 }.

That is

τ(AFB) ≥ 1
2
{aiibii + ajjbjj − [(aiibii − ajjbjj)2 + 4(mi

∑
k 6=i

|bki|
hk

)(mj

∑
l 6=j

|blj |
hl

)]
1
2 }

≥ min
i 6=j

1
2
{aiibii + ajjbjj − [(aiibii − ajjbjj)2 + 4(mi

∑
k 6=i

|bki|
hk

)(mj

∑
l 6=j

|blj |
hl

)]
1
2 }.

Now, assume that AFB is reducible. It is well known that a matrix in Zn is a nonsin-
gular M -matrix if and only if all its leading principal minors are positive(see condition (E17)
of Theorem 6.2.3 of [6] ). If we denote by D = (dij) the n × n permutation matrix with
d12 = d23 = · · · = dn−1,n = dn1 = 1, the remaining dij zero, then both A − tD and B − tD

are irreducible nonsingular M -matrices for any chosen positive real number t, sufficiently
small such that all the leading principal minors of both A − tD and B − tD are positive.
Now we substitute A− tD and B − tD for A and B, respectively in the previous case, and
then letting t −→ 0, the result follows by continuity.



No. 5 Some new eigenvalue bounds for the Hadamard product and the fan product of matrices 899

Theorem 2.2 Let A,B ∈ Rn×n be two nonsingular M -matrices. Then

min
i 6=j

1
2
{aiibii + ajjbjj − [(aiibii − ajjbjj)2 + 4(mi

∑
k 6=i

|bki|
hk

)(mj

∑
l 6=j

|blj |
hl

)]
1
2 }

≥ min
1≤i≤n

{aiibii −mi

∑
k 6=i

|bki|
hk

}.

Proof Without loss of generality, for i 6= j, assume that

aiibii −mi

∑
k 6=i

|bki

hk

≤ ajjbjj −mj

∑
l 6=j

|blj |
hl

. (2.2)

Thus, (2.2) is equivalent to

mj

∑
l 6=j

|blj |
hl

≤ mi

∑
k 6=i

|bki|
hk

+ ajjbjj − aiibii. (2.3)

From (2.1) and (2.3), we have

1
2
{aiibii + ajjbjj − [(aiibii − ajjbjj)2 + 4(mi

∑
k 6=i

|bki|
hk

)(mj

∑
l 6=j

|blj |
hl

)]
1
2

≥ 1
2
{aiibii + ajjbjj − [(aiibii − ajjbjj)2

+4(mi

∑
k 6=i

|bki|
hk

)(mi

∑
k 6=i

|bki|
hk

+ ajjbjj − aiibii)]
1
2 }

=
1
2
{aiibii + ajjbjj − [(aiibii − ajjbjj)2

+4(mi

∑
k 6=i

|bki|
hk

)2 + 4(mi

∑
k 6=i

|bki|
hk

)(ajjbjj − aiibii)]
1
2 }

=
1
2
{aiibii + ajjbjj − [(ajjbjj − aiibii + 2mi

∑
k 6=i

|bki|
hk

)2]
1
2 }

=
1
2
{aiibii + ajjbjj − (ajjbjj − aiibii + 2mi

∑
k 6=i

|bki|
hk

)}

= aiibii −mi

∑
k 6=i

|bki|
hk

.

Thus, we have

τ(AFB) ≥ min
i 6=j

1
2
{aiibii + ajjbjj − [(aiibii − ajjbjj)2 + 4(mi

∑
k 6=i

|bki|
hk

)(mj

∑
l 6=j

|blj |
hl

)]
1
2 }

≥ min
1≤i≤n

{aiibii −mi

∑
k 6=i

|bki|
hk

}.
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Example 2.1 Let

A =




4 −1 −1 −1
−2 5 −1 −1
0 −2 4 −1
−1 −1 −1 4


 , B =




1 −0.5 0 0
−0.5 1 −0.5 0

0 −0.5 1 −0.5
0 0 −0.5 1


 .

Then

AFB =




4 −0.5 0 0
−1 5 −0.5 0
0 −1 4 −0.5
0 0 −0.5 4


 .

By calculating with Matlab 7.0, we have τ(AFB) = 3.2296. By Theorem 3.1 in [4], we
have

τ(AFB) ≥ min
i
{aiibii −mi

∑
k 6=i

|bki|
hk

} = 2.4333.

By Theorem 2.1 in this paper, we have

τ(AFB) ≥ min
i 6=j

1
2
{aiibii + ajjbjj − [(aiibii − ajjbjj)2

+(mi

∑
k 6=i

|bki|
hk

)(mj

∑
l 6=j

|blj |
hl

)]
1
2 } = 2.9779.

This numerical example shows that the result in Theorem 2.1 is better than that in
Theorem 3.1 in [4].

3 An Upper Bound for the Spectral Radius of the Hadamard Product

of Nonnegative Matrices

In this section, we will give an upper bound for ρ(A ◦B).
Theorem 3.1 Let A,B ∈ Rn×n, A ≥ 0 and B ≥ 0. Then

ρ(A ◦B) ≤ max
i 6=j

1
2
{aiibii + ajjbjj + [(aiibii − ajjbjj)2

+(mi

∑
k 6=i

bki

hk

)(mj

∑
l 6=j

blj

hl

)]
1
2 }. (3.1)

Proof It is evident that (3.1) is an equality for n = 1.
We next assume that n ≥ 2.
If A ◦ B is irreducible, then A and B are irreducible. Let λ be an eigenvalue of A ◦ B

and satisfy ρ(A ◦B) = λ, so that ρ(A ◦B) ≥ aiibii, ∀i ∈ N . Thus, by Lemma 2.2, there is a
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pair (i, j) of positive integers with i 6= j such that

|λ− aiibii||λ− ajjbjj | ≤ (mi

∑
k 6=i

1
mk

|akibki|)(mj

∑
l 6=j

1
ml

|aljblj |)

≤ (mi

∑
k 6=i

|akibki|
akihk

)(mj

∑
l 6=j

|aljblj |
aljhl

)

= (mi

∑
k 6=i

bki

hk

)(mj

∑
l 6=j

blj

hl

).

Thus, we have

λ ≤ 1
2
{aiibii + ajjbjj + [(aiibii − ajjbjj)2 + 4(mi

∑
k 6=i

bki

hk

)(mj

∑
l 6=j

blj

hl

)]
1
2 }.

That is

ρ(A ◦B) ≤ 1
2
{aiibii + ajjbjj + [(aiibii − ajjbjj)2 + 4(mi

∑
k 6=i

bki

hk

)(mj

∑
l 6=j

blj

hl

)]
1
2 }

≤ max
i 6=j

1
2
{aiibii + ajjbjj + [(aiibii − ajjbjj)2 + 4(mi

∑
k 6=i

bki

hk

)(mj

∑
l 6=j

blj

hl

)]
1
2 }.

Now, assume that A ◦B is reducible. If we denote by D = (dij) the n× n permutation
matrix with d12 = d23 = · · · = dn−1,n = dn1 = 1, the remaining dij zero, then both A + tD

and B + tD are nonsingular irreducible matrices for any chosen positive real number t. Now
we substitute A + tD and B + tD for A and B, respectively in the previous case, and then
let t −→ 0, the result follows by continuity.

Theorem 3.2 Let A,B ∈ Rn×n, A ≥ 0 and B ≥ 0. Then

max
i 6=j

1
2
{aiibii + ajjbjj + [(aiibii − ajjbjj)2 + 4(mi

∑
k 6=i

bki

hk

)(mj

∑
l 6=j

blj

hl

)]
1
2 }

≤ max
1≤i≤n

{aiibii + mi

∑
k 6=i

bki

hk

}.

Proof Without loss of generality, for i 6= j, assume that

aiibii + mi

∑
k 6=i

bki

hk

≥ ajjbjj + mj

∑
l 6=j

blj

hl

. (3.2)

Thus, (3.2) is equivalent to

mj

∑
l 6=j

blj

hl

≤ mi

∑
k 6=i

bki

hk

+ aiibii − ajjbjj . (3.3)
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From (3.1) and (3.3), we have

1
2
{aiibii + ajjbjj + [(aiibii − ajjbjj)2 + 4(mi

∑
k 6=i

bki

hk

)(mj

∑
l 6=j

blj

hl

)]
1
2 }

≤ 1
2
{aiibii + ajjbjj + [(aiibii − ajjbjj)2

+4(mi

∑
k 6=i

bki

hk

)(mi

∑
k 6=i

bki

hk

+ aiibii − ajjbjj)]
1
2 }

=
1
2
{aiibii + ajjbjj + [(aiibii − ajjbjj)2

+4(mi

∑
k 6=i

bki

hk

)2 + 4(mi

∑
k 6=i

bki

hk

)(aiibii − ajjbjj)]
1
2 }

=
1
2
{aiibii + ajjbjj + [(aiibii − ajjbjj + 2mi

∑
k 6=i

bki

hk

)2]
1
2 }

=
1
2
{aiibii + ajjbjj + (aiibii − ajjbjj + 2mi

∑
k 6=i

bki

hk

)}

= aiibii + mi

∑
k 6=i

bki

hk

.

Thus, we have

ρ(A ◦B) ≤ max
i 6=j

1
2
{aiibii + ajjbjj + [(aiibii − ajjbjj)2 + 4(mi

∑
k 6=i

bki

hk

)(mj

∑
l 6=j

blj

hl

)]
1
2 }

≤ max
1≤i≤n

{aiibii + mi

∑
k 6=i

bki

hk

}.

Example 3.1 Let

A =




4 1 1 1
2 5 1 1
0 2 4 1
1 1 1 4


 , B =




1 1 0 0
1 3 2 0
0 1 4 3
0 0 1 5


 .

Then

A ◦B =




4 1 0 0
2 15 2 0
0 2 16 3
0 0 1 20


 .

By calculating with Matlab 7.0, we have ρ(A ◦ B) = 20.7439. By Theorem 4.1 in [4],
we have

ρ(A ◦B) ≤ max
i
{aiibii + mi

∑
k 6=i

bki

hk

} = 23.2.
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By Theorem 3.1 in this paper, we have

ρ(A ◦B) ≤ max
i 6=j

1
2
{aiibii + ajjbjj + [(aiibii − ajjbjj)2

+4(mi

∑
k 6=i

bki

hk

)(mj

∑
l 6=j

blj

hl

)]
1
2 } = 21.865.

This numerical example shows that the result in Theorem 3.1 is better than that in
Theorem 4.1 in [4].
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矩阵Hadamard积和Fan积的特征值界的一些新估计式

陈付彬 ,任献花 ,郝 冰

(昆明理工大学津桥学院建筑艺术及工学系,云南昆明 650106)

摘要: 本文研究了非奇异M -矩阵A 与B 的Fan积的最小特征值下界和非负矩阵A与B的Hadamard积

的谱半径上界的估计问题. 利用Brauer定理, 得到了一些只依赖于矩阵的元素且易于计算的新估计式, 改进

了文献[4]现有的一些结果.
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