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Abstract: This paper considers the same risk model as in [1]. The risk model involves two
correlated classes of insurance business and the two claim number processes related to Poisson and
Erlang processes. Asymptotic results for ruin probabilities caused by different classes of claims
are obtained by renewal argument. Explicit expressions for ruin probabilities caused by different
classes of claims are derived when the original claim sizes are exponentially distributed. So the
relevant results in [1] is improved.
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1 Introduction

In this paper we consider a correlated aggregated claims model which was introduced
in [1]. We start with the description of the risk model involving two dependent classes of
insurance business. Let {X,,,n > 1} be claim size random variables for the first class with
common distribution function F; and mean pu, and {Y,,,n > 1} be those for the second class
with common distribution function F» and mean ps. Then the risk model generated from

the two correlated classes of business is given by

K1 (t) Ks(t)

Ut)=utct— > Xi— > Y, (1.1)

where u is the amount of initial surplus , ¢ is the rate of premium, and {K;(t),t > 0} is the
claim number process for class i(i = 1,2). It is assumed that {X,,n > 1} and {Y,,n > 1}
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are independent claim size random variables, and that they are independent of { K (t),t > 0}

and {K5(t),t > 0}. The two claim number processes are correlated in the way that
Ki(t) = Ni(t) + N3(t) and Ky (t) = No(t) + Ns(t),

with {Ny(t),t > 0}, {N2(t),t > 0} and {N3(¢),t > 0} being three independent renewal
processes. The ultimate ruin probability is ¥ (u) = P(U(t) < 0 (for some ¢t > 0) and
ultimate survival probability is ¢(u) =1 — 9¥(u). Let ¢, (u)(j = 1,2,3) be the ultimate ruin
probability caused by the jump of {N;(t),t > 0} (j = 1,2, 3), respectively. ¢;(u) (j =1,2,3)
are useful variables if the insurer wants to know the impact of different classes of claims. It
is obvious that ¥ (u) = ¥ (u) + P2 (u) + 13 (u).

As we know that the correlation in (1.1) comes from the incorporation of the common
component N3(t) into the two claim number processes. In reality, the common shock N3(t)
can depict the effect of a natural disaster that causes various kinds of insurance claims.

Bai Xiaodong and Song Lixin [2] considered the model (1.1) with a constant force
of interest, and assumed that the claim-size distributions were heavy-tailed and {N;(¢),t >
0},j = 1,2, 3 were three independent general renewal processes. Under this setting, the paper
investigated the tail behavior of the sum of the two correlated classes of discounted aggregate
claims, and obtained the uniform asymptotic formulas for some subclass of subexponential
distributions. Yuen et al. [1] and Liu Yan [3] considered the model (1.1) with {N;(¢),t > 0},
{Nz(t),t > 0} being Poisson processes and {N3(t),t > 0} being Erlag(2) process. Yuen et
al. [1] derived explicit expressions for the ultimate survival probabilities under the assumed
model when the original claim sizes were exponentially distributed and also examined the
asymptotic property of the ruin probability for this special risk process with general claim size
distributions. Liu Yan [3] further discussed some other ruin functions such as the distribution
of the surplus immediately before ruin, the distribution of the surplus immediately after ruin
and the joint distribution of the surplus immediately before and after ruin. Lv Tonglin et al.
[4] considered the model (1.1) with {Ny(¢),¢ > 0}, {N2(t),t > 0} and {N3(¢),t > 0} being all
Poisson processes. The asymptotic results for the deficit at ruin caused by different classes
of claims were obtained. The explicit expression for the deficit at ruin caused by different
classes of claims were given when the original claim sizes were exponentially distributed.

In our paper, motivated by the work in [4], we further improve the work of Yuen et al.
[1], and consider the ultimate ruin probability v,;(u) caused by the jump of {N,(t),t > 0}
(j = 1,2,3) for the model (1.1) with {Ny(¢),t > 0}, {Na(t),t > 0} being Poisson processes
and {N5(t),t > 0} being Erlag(2) process. Let the parameters of the two Poisson processes,
{Ny(t),t > 0} and {Nz(t),t > 0}, be A; and Ag, respectively. Assume that {N3(t),¢ > 0} is
an Erlang(2) process with parameter A. That is, the claim inter arrival times for {Ns(t),¢ >
0} follow Erlang distribution with density function f(t) = A2t exp{—At} for ¢ > 0.

2 Model Transformation

For investigating the probability of ruin for U(t) in model (1.1), we make use of the



886 Journal of Mathematics Vol. 34

following transformed surplus process:

Ni(t) Na(t) Ns(t)

U't)=u+ct— ZX v =Yz,
i=1 i=1

where {X|,n > 1} and {Y,,n > 1} are independent claim size random variables, and their
common distribution functions are F} and Fj, respectively. {Z,,n > 1} are independent
claim size random variables with common distribution function F3 = F} * F5, the notation
Fy % F, stands for the convolution of Fy and F, . Furthermore {X,,n > 1}, {Y,,n > 1},
{Z .n > 1}, {Ny(t),t > 0}, {No(t),t > 0} and {Ns(t),t > 0} are independent. It is easy
to see that the transformed process {U (t),t > 0} and the original process {U(t),t > 0} are
identically distributed. Hence, the process {U(t),t > 0} can be examined via {U’(t),t > 0}
. Let Ty = Th1 + Tha, To = Ty + Toa, - -+ be the inter arrival times for {N3(t),t > 0} , where
Ti1,Ti2,T51,T5s, -+ are independent exponential random variables with mean AL, Since
A1, Aopto and %S\(M +12) are the expected aggregate claims associated with {Ny(¢),¢ > 0},
{Nz(t),t > 0} and {N5(t),t > 0}, respectively, over a unit time interval, the positive relative
security loading condition implies that ¢ > Ajp1 + Ao + %5\(/11 + o).

We now make a slight change to the transformed process and introduce the the following

surplus process:

Ni(t) Na(t) Ns(t)

Ut)=utct— Y X, = > Y, => 7, (2.1)
i=1 i=1 i=1

where {Ng(t),t > 0} is a delayed renewal processes with the inter arrival times Ty, To1 +

T5o,T51 + T35,---. The corresponding ruin probabilities and survival probability for the
model (2.1) are denoted by ¥ (u ) Dr (w), (), s (w), G(u).
Define h;( fo edF(x) —1,i=1,2,3, and set F;(z) =1 — Fy(z),i =1,2,3.

3 Asymptotic Results for General Claim Sizes

The main result in this section is the following theorem.
Theorem 1 Assume that there exist 7y > 0 and r5 > 0 such that hi(r) T oo asr 1 r

and ha(r) T oo as r T rg, then we have

- A (hqz(R) _ M‘)
lim ef vilu) + ¥i(u) < ' r Z~ 1 =1,2
u—o0 2 T ARU(R) + Aahy(R) + Shy(R) — ¢
and
Y 2 (L’(R) — M1 — Mz)
lim eRu ¢3 (U) + ¢3 (U) < 2 _
u—00 2 ~ AR(R) + Aohy(R) + 3h5(R) — ¢

where R is the positive solution of the equation A1hq(r) + A2ha(r) + %hg(T) = cr.
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Proof We first consider {U'(t),t > 0} in a small time interval (0,¢]. Noting that
P(N;3(t) > 1) = o(t), we separate the five possible cases as follows:

(1) Ni(t) =0,Na(t) =0 and t < Tiy;

(2) Ni(t) =0, No(t) = 0 and Ti; < t < Thy + Tho;
(3) Ni(t) =1,Na(t) =0 and t < Tiy;

(4) Ny(t) =0,Ny(t) =1 and t < Tis;

(5) all other cases.

The probabilities of the above several cases are p; = 1— (A +Xa+A)t40(t), po = At+o(t),
p3 = Mt + o(t), ps = Aot + o(t), and ps = o(t) respectively. Then by the total probability

formula we get
i(u) = [L— (A + Ao+ Mt g (u+ ct) + Xty (u + ct)

u+tct
+/\1t/ dJl (U +ct — .ZE)dFl (l’) + )\125?1 (U + Ct)
0

Aot /Oum Y1 (u+ et — x)dFy(z) + o(t), (3.1)
Ua(u) = [1— (A + X+ N)t] ¥a(u+ ct) + Mapo(u+ ct) + At /Oum Yo (u + ct — x)dFy (z)
+Aot /Oum Po(u+ ct — x)dFs(z) + MtFo(u + ct) + o(t) (3.2)
and
Ya(u) = [L— (A + Ao+ Nt] ¥s(u+ ct) + My (u + ct)

u—+ct
+)\1t/ Y3(u+ ct — z)dF ()
0

u+ct
—1—)\275/ Y3(u+ ct — x)dFy(x) + o(t). (3.3)
0
Using (3.1), provided 1 (u) is differentiable, we can get

i () = (A1 +As+ N () = Ay (w)
X\ /Ou U1 (u— x)dFy () — M Fy () — Ao /Ou 1(u—z)dFy(z).  (3.4)
Integrating (3.4) over (0,u) yields
cpi(u) = ci(0)+ /O ' V1 (u— ) (M F1(z) + Ao Fa(z)) do
+2 /Ou (1(x) — () dz — Ay /Ou Fi(z)dz.
Let u — oo yields

a1 (0) = A /0 Fi(z)dx — 5\/0 (1/11(3;) — zzl(x)) dx,
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which in turn implies that
cpr(u) = /0 1 (u— ) (Alfl (x) + /\gfg(x)) dx
—5\/00 (1 (x) — U () dz + A\ /OO Fy(z)dz. (3.5)

Next we consider {U(t),t > 0} in a small time interval (0,t] and separate the five
possible cases as follows:

(1) {N:(t) = 0, Ny(t) = 0 and Ns(t) = 0;
(2) {Ni(t) = 1, Ny(t) = 0 and Ny(t) = 0;
(3) {Ni(t) =0, N(t) = 1 and Ny(t) = 0;
(4) {N1(t) =0,Ny(t) =0 and T1; <t < T11 + Tos;

(5) all other cases.

The probabilities of the above several cases are p; = 1 — (A1 + Ay + 5\)15 +o(t), p2 =
At + o(t), ps = Mot + o(t), ps = M + o(t), and ps = o(t) respectively. Then by the total
probability formula we get

P1(u) = [1— (A + X2+ Nt] ¥y (u+ ct)
+ At /Ou+0t Uy (u+ et — x)dFy (z) + MtFy (u+ ct)
+ ot /Oum Uy (u+ et — x)dFy(x) + Mt /Oum 1 (u+ et — x)dFs(z) + o(t), (3.6)
Po(u) = [1— (M + X2 + A)t] da(u+ ct) + Alt/oum o (u + ct — x)dF, (z)

+ Aot /0 o Yo (u + ct — x)dFy(z) + Mot Fou + ct)

+ At /0 o Vo (u + ct — x)dFs(z) + o(t) (3.7)
and

Y3(u) = [I1—(M+X+ :\)t] P3(u+ ct) + Alt/wrd Us(u + ct — x)dF (z)

u—+ct u—+ct
—1—)\275/ Ya(u+ ct — z)dFy(zx) + )\t/ Y3(u+ ct — z)dF3(x)
0 0
FXtF3(u + ct) + o(t). (3.8)
Based on (3.6), using similar argument by which we deduce (3.5), we can obtain
i) = [ -0 (W) + MFa(@) o+ 3 [ bilu- oFa(s
0 0

+5\/ (v1(s) — 1/;1(5)) ds + )\1/ Fi(s)ds. (3.9)
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From (3.5) and (3.9), it is easy to see that

i)+ i) N [T A 7
BB A T e s /0 (- 2)Fs(z)da

+ /u wl(u — .’E) =+ wl(u — .’II) )\1?1(.%) =+ )\2?2(%)

. 1
5 . dz (3.10)

Noting v (u) < 91 (u), we get from (3.10) that
e R
Y apy(u— x) + i (u— 2) MF1(2) + Ao Fo(2) + 5 F3(2)
o 2 c

+

da. (3.11)

The positive relative security loading condition implies that

<1

)

/oo /\1?1(37) + )\2?2(.7}) + %Fzg(l’) di
0 C

so inequality (3.11) is a defective renewal type of inequality. Assume that there exist r1 > 0
and ro > 0 such that hi(r) T oo asr 17y and ha(r) T oo as r | ro . Then there exists R > 0
such that A1y (R) + A2ha(R) + $hs(R) = cR, that is,

de =1.

/-oo eRI )\1?1(‘%) + )\QFQ(ZU) + %Fg,(lﬂ)
0 C

Then multiplication of (3.11) by ef* yields the following renewal type of inequality
eR“—wl(u) ;— 210 < AleR“/ Fy(z)dz
c u

N / ) Pr(u = 2) + U (u— ) e M F1(2) + AoFa(2) + 5 Fa()
0 2 c

dr. (3.12)

From the renewal theorem®!, it then follows that

lim eR“M < Jo e, Fl(:v)d:rdu
U—00 2 - fooo xeRI A\ Fq (I)"r/\zfcz (z)+%f3(x) da

Al (LI(%R) - Ml)

AP (R) + Aohiy(R) + 3h4(R) — ¢

Similarly, (3.2) and (3.7) lead to the result for ¢, (3.3) and (3.8) lead to the result for
13. Thus we complete the proof of Theorem 1.

Remark 1 Noting that 1 (u) = 11 (u)+2(u)+t5(u) and P (u) = 1 (u)+tha(u) +40s(w),

based on Theorem 1, we can get the asymptotic result for w in [1].
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4 Ruin Probabilities for Exponential Claim Sizes

In this section, we will consider the case of exponential claims

Theorem 2 Suppose that Fi(x), Fo(x) are exponential distributed with equal mean
1 = po = p. Then 1, (u) = Cirq(z1)e*™ + Ciaq(2z2)e®", i = 1,2,3, where

A — ¢ 1 3 1/2
)
By v Co KR 20 o, o’ g
)=1+zA+A-—)z+=0A——)z ’

A=A+ Xo + ),

Ci1,Cio (and Cy3),i = 1,2, 3 satisfy

(cz1 — AN)Ci1 + (czg — N)Cia — (ﬁ +A)Ciz = =\,
((621 —

Na(z1) + :\) Cin+ ((622 —A)q(z2) + 5\) Cio + XCi3 = —

c2f — (A= <)z — ;)> Ca+ (czg

i=1,2
: o = ) ot St -

and

(CZl — )\)031 —+ (CZQ — )\)032 — (

£+ )03 =0,
((CZI = Na(z1) + 5\) Cs1 + ((022

A)q(z2) + 5\) Csy + ACs3 = —~
2= (A= £)21=2) Con+ (3 - (A= )z = ) Cus + M“zc 4y = =2

Proof We firstly consider v (u). Using (3.6), we can get

czﬁl)(u) = A@Zl(u) -\ /“ 1;1 (u—z)dFy(z) — M\ F

/wlu—xng /1/11u—xdF3() (4.1)

Since Fi(x), Fp(x) are exponential distributed with equal mean pu; = ps = u, F3(x) follows
an Erlang distribution with density g2z exp{—pu~'z} for z > 0. In this case (3.4) and (4.1)
become

u

m

U w) = Mn() = () = 222 [ g e
0

and

it (u)

m

My (u) — >\1;’;)\2/ Uy (u—x)e idr — Ae”
0

u+ct
_5\/ V1 (u — 2)p %z exp{—p'x}dr.
0
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Differentiation leads to
b () =;WPW%J%WM—XHJZPMO—I/ZMmK
M () — X0 () +

A _u
} + ie_ﬁ
I

(O 2 + D () = Moy () — vV (w)|

‘:\*—‘

o S OIS
= A=)+ () - My (u) PRaAl (4.2)

and ep(? (u) = (A = )8 () + 2 (u) = % [ v (@)e” T da.

Furthermore,

B0 = O — 252 M_) D0+ A d ) — b (u
P17 (u) = (A M)wl()+< . %()+M2¢1() /ﬂwl( ). (4.3)

Hence, (4.2) and (4.3) form a linear differential system with boundary conditions

Y1 (00) = 0,11 (00) :NON

i (0) = Ap1 (0) — A (0) — Ai,
i (0) = Mn(0) = Aty

i (0) = (A= )97 (0) + 24 (0).

Using (4.2) and (4.3),we obtain

(4.4)

2t (w) + epa(3e — 209 () + (e = ) (s = 3¢) — 203) ¥ (w)

+ ((/\u —)+2h - 9 — 2CX> 2 () + 22 </\ - ;) 2V () = 0.

I

Its characteristic equation
APz + ep(3e — 22p) 2t + (A — ¢) (A — 3¢) — 2c,u5\) P
+ <()\u—c)()\+25\—c)—205\) 22 42X <)\—C> z2=0
[ [

has five roots, namely,

_ 1 1

21 = )\,LL C’ZQ (A'LL—C_ (8C,LL)\+(C_AM) )1/2> 72”3:_77
cl 2(:,u K
1 /2

24 = e (Au—c+(80u)\+(c—)\ﬂ)) )725:0'

The positive relative security loading condition, ¢ > Ap, implies that only z; is positive.
Together with 1 (00) = 0, the general solution for iy (u) is

’JJl (u) = C’Hezlu + 012622u + C’lgezw. (45)
From (4.3) and (4.5), we have ¥ (u) = C11q(z1)e*" + C12q(z2)e*?" 4+ Ci3q(z3)e**", where
2 2 2
- e

- ¢
a(=) 5 TR T X
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Noting that ¢(z3) = 0, we get
wl(u) = qu(zl)ezlu + C12q<22)622u. (46)
(4.5), (4.6) and boundary conditions (4.4) leads to

(cz1 = N)Ch1 + (cz2 — N)Cha — (ﬁ +A)Ci3 = =y,
((C'Zl - )\)Q(Zl> + 5‘) Cii+ ((CZ2 ) (22) + 5\) Cis + 5\013 = -,
(Czl -(A= *)Zl - *)) Cu + (sz (A= *)22 - *)) Cio + >‘1+’\ZC

Similarly, for i = 2,3, we have

Cc

Wl (u) = (3= Dy ) + 2wi<u> ~ 5O (w) -

and

AP = (= 290w + (A“—"

with boundary conditions

s (0) = Mz (0) — Apa(0) — s,
s (0) = Mo (0) = Ao,
e (0) = (A = £)P57(0) + 240(0)
and
¢3(00) = 0,1/;3(00) :NOZ
cp$D(0) = Mbs (0) — Ay (0),
5" (0) = As(0) — A, ~
e (0) = (A — )95 (0) + 2455(0) — 2.

Further, we can get the results for ¥ and 3 in Theorem 2.

Example For \; =\, = 1,A =1, =1 and ¢ = 6, the ruin probability are
1 (u) = 0.203832¢ 339333 4 0.059671e~ 070792,
P3(u) = 0.167713¢ 0333333 _ (0,087518¢ 0767592,
Noting that ¥ (u) = ¥ (1) 4 tha(u) + ¥s(w), ¥(u) = U1 (u) 4 ha(u) + 3(u) and
G(u) =1 —(u), d(u) = 1 — P(u).

We can get the following linear differential system

c¢<2)<u>=<Af§>¢<”< u) + ¢< ) = AW (u) —
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and
cdD () = (A — 265y, /\+/~\_C>~<1>u At 2o
¢ (u) = (A M)<l> ()+< . ¢ ()+M2¢() M2¢()

with boundary conditions

6(00) = 1,9(00) = 1.

¢6(0) = A(0) — A(0),
e3(0) = A3(0), B
¢6®(0) = (A~ ) (0) + 24(0)

These are just (3.5)—(3.7), respectively in [1].

Using methods similar to the proof of Theorem 2, we can get following theorem and

remark.

Theorem 3 Suppose that Fj(x), F»(z) are exponential distributed with unequal mean

1 # pe. Then we can obtain, for i = 1,2, 3,

o = (A= L) (A Ay

and

W = (A= - L)+ (A A g
A~ A

+ i
1 fi2 1 f2

with boundary conditions

ey (0) = A (0) = Mfi(0) = X,
etV (0) = My (0) — Ay, P=1,2
e (0) = MtV (0) — (2 + 22 4,(0) — M)V (0) + 2,
e (0) = AV (0) — (A + 22) 4 (0) + 22,
and ~
1/13(00) = 07%(00) :Noi
cp§ (0) = M3 (0) — M3 (0),
c§M (0) = Mbs(0) — A,

— (2422 g 0) — X (0),

M1 H2

(0)
= M5 (0) — (& + 22 ) 4s(0).

M1 H2

(4.10)
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Remark 2 Based on (4.7) and (4.8), we can get the following linear differential equation

A61/~1§6) (u) + A51Z~)§5) (u) + A41/~Jf4)(u) + quﬂf’) (u) + Ag@[)l@) (u) + Aﬂ[}gl)(u) =0,

T e I ()
241 H2 M2 M1 M2

A=A A=A SR .
Ay = ,U1,u2< -+ 2__°© > +2)\<>\—c—c)—)\27
251 25) M2 M1 2

A, = 2<M1M2<)\—C—C> <)\—)\1+)\—)\2_ c )—cZ\),
[ V% 251 ) a2

2
A=A A=A
Ay = ,U1,u2<</\—c—c> —26( -+ 2 ° >>7
H1 o M2 H1 H2 Hif2

A5 = *QC,LLLLLQ (A _— = > s
%51

A = CQMMQ.

where

Given the parameter values, together with the boundary conditions, we can solve for %,i =
1,2,3 (and hence 1,7 = 1,2, 3) using computer software.
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