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Abstract: This paper studies the existence of solutions for a second order difference boundary
value problem. Using critical point theory and variational method, some existence theorems of
solutions are established. The results obtained here improve some existing results in the literature.
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1 Introduction

Let N,Z,R be the set of all natural numbers, integers and real numbers, respectively.
RY is the real linear space with dimension N. For a,b € Z with a < b, [a,b] denotes the
discrete interval {a,a + 1,--- ,b}.

In this paper, we shall investigate the existence of solutions for the second order differ-

ence boundary value problem

{—AQu(t = 1) = Xf(t,u(t)), t € [1,T], (L.1)

u(0) =u(T' +1) =0,

where T' > 3 is a fixed positive integer, A is a positive parameter, Au(t) = u(t + 1) — u(t) is
the forward operator, A%u(t) = A(Au(t)), and f € C([1,T] x R,R) with f(¢,0) = 0.

The study of discrete boundary value problems has captured special attention in the
last years. The studies regarding such type of problems can be placed at the interface of
certain mathematical fields such as nonlinear partial differential equations and numerical
analysis. We refer to the results [1-7] and the references therein.

In [1], Wang et al. considered the problem (1.1) without the parameter A, and obtained

the existence of non-trivial solutions of problem (1.1) with resonance at both infinity and zero.
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The methods used here are based on combining the minimax methods and the Morse theory
especially some new observations on the critical groups of a local linking-type degenerate
critical point.

In [2], Alexandru Kristdly et al considered (1.1) with the autonomous nonlinearity
and A = 1. By a direct variational method, they showed that (1.1) has a sequence of
non-negative, distinct solutions which converges to 0 (respectively +o00) in the sup-norm
whenever f oscillates at the origin (respectively at infinity).

In our paper, under the case of dependence on our parameter A, we shall discuss the
existence of solutions for (1.1). The features of this paper mainly include the following
aspects. First, we assume that the nonlinearity f satisfies the Lipschitz condition to ensure
(1.1) has precisely one solution by virtue of Browder theorem (see [8, Theorem 5.3.22]).
Second, we respectively utilize the least action principle, Linking theorem, Clark theorem to

obtain the existence of one solution and multiple solutions for (1.1).

2 Variational Structure and Lemmas

We must need to define a Hilbert space so that we can give the variational formulation
of (1.1). Let H = {u = (u(0), -+ ,u(T + 1)) : u(0) = u(T + 1) = 0}. Equipped with the
inner product and the induced norm

T+1

(u,0) = > Au(t — 1) Av(t — 1)

t=1

and norm

T+1 3
[ull = (Z | Au(t — 1)I2> ,

H is a T-dimensional Hilbert space.

We first consider the linear boundary value problem

(2.1)

{—Nu(t —1) = Au(t), t € [1,T),
w(0) = u(T 4+ 1) = 0.

As known to all, \; := 4sin? ﬁ > 0,i € [1,T] are the distinct eigenvalues of (2.1).
Let ¢;,i € [1,T] be the corresponding orthogonal eigenvectors, where ¢;(j) = sin 725, j €

[1,T]. Corresponding to the eigenvalues \; we have the splitting H = X @ W, where
X =span{¢q,---,¢;}, W = span{it1,-- -, dr}. Moreover, the following inequalities hold:

Alul? < [Jull? < Arlul?, Vu € H, (2.2)

Aul? < lull* < Njul?,Vu € X, (2.3)

Nip1|ul? < Jlull® < Arlul?, Vu € W, (2.4)
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where |u|? = Z lu(t)
We deﬁne an energy functional J : H — R as

T+1

Z |Au(t—1)]* =AY F(tu(t),u € H, (2.5)

where F(t, ) fo f(t,s)ds. Then it is clear that J is of C'(H,R) with the fréchet deriva-

tives given by

T+1 T+1
(J' (u),v ZAut—l)Avt—l )\thu t),u,v € H, (2.6)
t=1
and the solutions of (1.1) are exactly the critical points of J in H.

Definition 2.1 Let F be a Banach space. For I € C'(E,R), we say I satisfies the
Palais-Smale condition if any sequence {x,,} C E for which I(x,,) is bounded and I'(x,) — 0
as n — 00 possesses a convergent subsequence.

Definition 2.2 (see [8, p303]) Let E be a reflexive real Banach space. We say .2 : E —
E* is demicontinuous if .Z maps strongly convergent sequences in E to weakly convergent
sequences in F*.

Lemma 2.1 (Browder Theorem, see [8, Theorem 5.3.22]) Let E be a reflexive real
Banach space. Suppose that % : E — E* be an operator satisfying the conditions

(i) £ is bounded, demicontinuous;

(i) lim (Z0 — 4o

u
luf—oo

(iii) -Z is monotone on the space FE, i.e., for all u,v € F, we have

(Z(u)—ZL(v),u—wv)>0. (2.7)

Then the equation
L) = f* (2.8)

has at least one solution u € E for every f* € E*. If, moreover, inequality (2.7) is strict for
all u,v € E, u # v, then equation (2.8) has precisely one solution u € E for every f* € E*.

Lemma 2.2 (see [9]) Let E be a reflexive real Banach space and I € C*(E,R) weakly
lower semicontinuous and coercive, i.e., | lﬁm I(u) = +00. Then there exists uy € F such
that I(ug) = i%f I(u).

Lemma 2.3 (Linking theorem, see [10]) Let E be a real Banach space and I € C*(E,R)
a functional satisfying (PS) condition and bounded from below. Suppose that I has a local
linking at the origin 6, i.e., there is a decomposition E = X @ W and a positive number p
such that dim X < oo, I(y) < I(0) for y € X with 0 < ||y|| < p; I(y) > I(0) for y € W with
0 < ||yl < p. Then I has at least three critical points.

Lemma 2.4 (Clark theorem, see [11]) Let F be a real Banach space, I € C'(E,R) with
I even, bounded from below, and satisfying (PS) condition. Suppose that 1(#) = 0, there is
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a set K C E such that K is homeomorphic to S7~! (the j — 1 dimensional unit sphere) by
an odd map and supy I < 0. Then [ has at least j distinct pairs of critical points.

3 Main Results

Now, we list our assumptions on f and F'.

(H1) There exists a positive constant ¢; such that

|f(t,u) — f(t,0)] < eilu—wvl|, Yu,v € H and t € [1,T].

(H2) There exist a > 0 and p € (0,2) such that limsup Fl(t‘f) <a, Vu € Hand t €
|u|—o00
[1,T].
(H3) There is a positive constant ¢; such that hm Eltw) — gy, Vu e H and t € [1,T].

lu|—0 lul?

(H4) There is a positive constant g, such that lim 1nf ( ") > q,Vu € H and ¢ € [1,T].

[u|—

(H5) F(t,u) is even with respect to u, i.e., F(t, —u) ( ,u) foru e H and t € [1,T].
Theorem 3.1 Suppose that (H1) holds. Then (1.1) has precisely one solution for

A€ (0,20).
Proof Put
T+1 T+1
(L (u) Z Au(t —1)Av(t —1), ( Zf(t u(t))v(t), for every u,v € H.
t=1

Clearly, .4, : H — H is a linear bounded operator, so demicontinuous. By (H1), (2.2) and

Cauchy-Schwarz inequality, we see

T+1
(Lo () — Lo(us), I<Z|ftul F(tuz(®))|[v(t)]
T+1 (3.1)
<Zc1\u1 —uz(t)[Jo(t)] < A terllur — unll||v]l, Yur, up, v € H.

Consequently, .% : H — H is continuous, so demicontinuous. Therefore, . = % — \.%
form H to H is demicontinuous. From (H1) and f(¢,0) = 0, we see there is a ¢ > 0 such
that

|f(t,u)| < er|ul +co, Yu € H and t € [1,T]. (3.2)

It follows from (2.2), (3.2) and Cauchy-Schwarz inequality that

T+1 T+1 5 /a1
(& |<Z|ftu )[u(t) <<Z|ftu ) (Zw(tn?)

1

sy 2 /T+1 3
< (Z(Qcﬂu(tﬂz + 203)) (Z |v(t)|2> (3.3)

t=1

2 1
< 1/)\— (01)\1 2ul| + cavVT + 1) lv|l < oc.
1

[N
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Therefore, .Z is bounded. By (3.2) again, we get

T+1 T+1
(L(w),u) =Y |Au(t— 1) )\Zf £ ut))u(t)
t=1 .

)\02
VA

Ac
> ul® Achu )|+ eu®] = (1= ) ull? = ZEVT F Tull

(ZL(w)u)

flel

Therefore, lim
llul|—o0

= +o00. Finally, by (H1), we arrive at

(Z(u) = ZL(v),u—v)

T+1 T+1
= |Au(t —1) = Av(t — 1) /\Z Flt,u(t)) — £t 0(t) (u(t) — v(t))
>l —ov|* — )\Cl ||ufv|\2>0 Vu,v € H and u # v.

Hence, Lemma 2.1 implies the equation . (u) = 0 has precisely one solution v € H. Equiv-
alently, (1.1) has only a solution u € H.
Theorem 3.2 Suppose that (H2) holds. Then (1.1) has a solution for all A > 0.
Proof By (H2), we see there is a b > 0 such that

F(t,u) < alul* +b,Yu € H and t € [1,T]. (3.4)

Consequently, we have by Holder inequality

T+1

Ju) == Z [Au(t —1)> = A F(tu(t))

T % T 1-5

1 , 1 02

z§\|u||2—AZ<a|u<t>v+b>z§||u||2 (Z (Ju()]") ) ( ) — AT
t=1 t

1 3 2—p
> Sl = XA T ull# — W

2

(3:5)

Therefore, p € (0,2) implies J(u) is coercive, i.e., | lﬁm J(u) = +o00. Since H is a real

reflexive finite dimensional Banach space and J € C'(H,R), so J is weakly lower semi-
continuous on H. Lemma 2.2 leads to there is a uy € H such that J(ug) = i%f J(u) and
J'(up) = 0, hence (1.1) has at least one solution.

Theorem 3.3 Suppose that (H2) and (H3) hold. Then (1.1) has at least three solutions
for A€ (25, 35) (i=1,2,--- , T —1).

Proof Recall that in the finite dimensional setting, it is well-known that a coercive

functional satisfies (PS) condition. By (H2), we see J is coercive, i.e., lim J(u) = +oo.

llu]|—o0

So (PS) condition is spontaneously satisfied for J.
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By (H3), for ¢ € (0, 1), there exists p > 0 such that
(qn = )l < F(t,u(t)) < (g1 +&)|ul?, for [u] < p,t e [1,T]. (3.6)

For u € X = span{¢s,---,¢;} with 0 < ||ul| < p, we see

T+1

J(u) = meu (t=DP =X F(tu(t)

(3.7)
Mg —¢)
< L - AZ R R e I3
Thus, for A > so—, we have J(u) < 0 for v € X with 0 < |lu| < p.
On the other hand, for u € W = span{¢; 11, -+, ¢r} with 0 < ||u|| < p,
| I T
Z [Au(t —1)P =AD" F(t,u(t))
=t (3.8)

%nuw AZQ1+€)|U o> (- 245D e,

the for \ < qu:s), we have J(u) > 0 for u € W with 0 < ||ul| < p. So, by Lemma 2.3, for

g€ (0,q1), if X € (m, 2(/1\111:-15 ), J has at least three critical points. By the arbitrariness

of €, we get for \ € (2q'1, /\21;11 J(i=1,2,---, T —1), (1.1) possesses at least three solutions.
Theorem 3.4 Suppose that (H2), (H4) and (H5) hold. Then (1.1) hasi(i =1,2,---,T)
pairs of nontrivial solutions for A € (0, 22"2 ).
Proof J(u) is an even functional on H by (H5). As in Theorem 3.3, J satisfies (PS)
condition from (H2). If we choose K = X N dB,, then K is homeomorphic to S~! by an
odd map. By (H4), there is a p > 0 such that F(t,u) > go|u|® for |u| < p and t € [1,T]. So

for z € K, we see

T+1 T

J(u) = = Z [Au(t —1)P = A F(tu(t))

A
Sl - A2q2|u < (- 3E) e

J(u) < 0. Therefore, by Lemma 2.4, J has at least i pairs of

nontrivial critical points, i.e., (1.1) has 4 pairs of nontrivial solutions.

(3.9)

| /\

so for A\

2gq2°
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