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Abstract: This paper studies the existence of solutions for a second order difference boundary

value problem. Using critical point theory and variational method, some existence theorems of

solutions are established. The results obtained here improve some existing results in the literature.
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1 Introduction

Let N,Z,R be the set of all natural numbers, integers and real numbers, respectively.
RN is the real linear space with dimension N . For a, b ∈ Z with a ≤ b, [a, b] denotes the
discrete interval {a, a + 1, · · · , b}.

In this paper, we shall investigate the existence of solutions for the second order differ-
ence boundary value problem

{
−∆2u(t− 1) = λf(t, u(t)), t ∈ [1, T ],

u(0) = u(T + 1) = 0,
(1.1)

where T ≥ 3 is a fixed positive integer, λ is a positive parameter, ∆u(t) = u(t + 1)− u(t) is
the forward operator, ∆2u(t) = ∆(∆u(t)), and f ∈ C([1, T ]× R,R) with f(t, 0) = 0.

The study of discrete boundary value problems has captured special attention in the
last years. The studies regarding such type of problems can be placed at the interface of
certain mathematical fields such as nonlinear partial differential equations and numerical
analysis. We refer to the results [1–7] and the references therein.

In [1], Wang et al. considered the problem (1.1) without the parameter λ, and obtained
the existence of non-trivial solutions of problem (1.1) with resonance at both infinity and zero.
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The methods used here are based on combining the minimax methods and the Morse theory
especially some new observations on the critical groups of a local linking-type degenerate
critical point.

In [2], Alexandru Kristály et al considered (1.1) with the autonomous nonlinearity
and λ = 1. By a direct variational method, they showed that (1.1) has a sequence of
non-negative, distinct solutions which converges to 0 (respectively +∞) in the sup-norm
whenever f oscillates at the origin (respectively at infinity).

In our paper, under the case of dependence on our parameter λ, we shall discuss the
existence of solutions for (1.1). The features of this paper mainly include the following
aspects. First, we assume that the nonlinearity f satisfies the Lipschitz condition to ensure
(1.1) has precisely one solution by virtue of Browder theorem (see [8, Theorem 5.3.22]).
Second, we respectively utilize the least action principle, Linking theorem, Clark theorem to
obtain the existence of one solution and multiple solutions for (1.1).

2 Variational Structure and Lemmas

We must need to define a Hilbert space so that we can give the variational formulation
of (1.1). Let H = {u = (u(0), · · · , u(T + 1)) : u(0) = u(T + 1) = 0}. Equipped with the
inner product and the induced norm

(u, v) =
T+1∑
t=1

∆u(t− 1)∆v(t− 1)

and norm

‖u‖ =

(
T+1∑
t=1

|∆u(t− 1)|2
) 1

2

,

H is a T -dimensional Hilbert space.
We first consider the linear boundary value problem

{
−∆2u(t− 1) = λu(t), t ∈ [1, T ],

u(0) = u(T + 1) = 0.
(2.1)

As known to all, λi := 4 sin2 iπ
2(T+1)

> 0, i ∈ [1, T ] are the distinct eigenvalues of (2.1).
Let φi, i ∈ [1, T ] be the corresponding orthogonal eigenvectors, where φi(j) = sin ijπ

T+1
, j ∈

[1, T ]. Corresponding to the eigenvalues λi we have the splitting H = X
⊕

W , where
X = span{φ1, · · · , φi}, W = span{φi+1, · · · , φT}. Moreover, the following inequalities hold:

λ1|u|2 ≤ ‖u‖2 ≤ λT |u|2,∀u ∈ H, (2.2)

λ1|u|2 ≤ ‖u‖2 ≤ λi|u|2,∀u ∈ X, (2.3)

λi+1|u|2 ≤ ‖u‖2 ≤ λT |u|2,∀u ∈ W, (2.4)
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where |u|2 =
T+1∑
t=1

|u(t)|2.
We define an energy functional J : H → R as

J(u) =
1
2

T+1∑
t=1

|∆u(t− 1)|2 − λ

T∑
t=1

F (t, u(t)), u ∈ H, (2.5)

where F (t, x) =
∫ x

0
f(t, s)ds. Then it is clear that J is of C1(H,R) with the fréchet deriva-

tives given by

(J ′(u), v) =
T+1∑
t=1

∆u(t− 1)∆v(t− 1)− λ

T+1∑
t=1

f(t, u(t))v(t), u, v ∈ H, (2.6)

and the solutions of (1.1) are exactly the critical points of J in H.
Definition 2.1 Let E be a Banach space. For I ∈ C1(E,R), we say I satisfies the

Palais-Smale condition if any sequence {xn} ⊂ E for which I(xn) is bounded and I ′(xn) → 0
as n →∞ possesses a convergent subsequence.

Definition 2.2 (see [8, p303]) Let E be a reflexive real Banach space. We say L : E →
E∗ is demicontinuous if L maps strongly convergent sequences in E to weakly convergent
sequences in E∗.

Lemma 2.1 (Browder Theorem, see [8, Theorem 5.3.22]) Let E be a reflexive real
Banach space. Suppose that L : E → E∗ be an operator satisfying the conditions

(i) L is bounded, demicontinuous;
(ii) lim

‖u‖→∞
(L (u),u)
‖u‖ = +∞;

(iii) L is monotone on the space E, i.e., for all u, v ∈ E, we have

(L (u)−L (v), u− v) ≥ 0. (2.7)

Then the equation
L (u) = f∗ (2.8)

has at least one solution u ∈ E for every f∗ ∈ E∗. If, moreover, inequality (2.7) is strict for
all u, v ∈ E, u 6= v, then equation (2.8) has precisely one solution u ∈ E for every f∗ ∈ E∗.

Lemma 2.2 (see [9]) Let E be a reflexive real Banach space and I ∈ C1(E,R) weakly
lower semicontinuous and coercive, i.e., lim

‖u‖→∞
I(u) = +∞. Then there exists u0 ∈ E such

that I(u0) = inf
E

I(u).

Lemma 2.3 (Linking theorem, see [10]) Let E be a real Banach space and I ∈ C1(E,R)
a functional satisfying (PS) condition and bounded from below. Suppose that I has a local
linking at the origin θ, i.e., there is a decomposition E = X

⊕
W and a positive number ρ

such that dimX < ∞, I(y) < I(θ) for y ∈ X with 0 < ‖y‖ ≤ ρ; I(y) ≥ I(θ) for y ∈ W with
0 < ‖y‖ ≤ ρ. Then I has at least three critical points.

Lemma 2.4 (Clark theorem, see [11]) Let E be a real Banach space, I ∈ C1(E,R) with
I even, bounded from below, and satisfying (PS) condition. Suppose that I(θ) = 0, there is
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a set K ⊂ E such that K is homeomorphic to Sj−1 (the j − 1 dimensional unit sphere) by
an odd map and supK I < 0. Then I has at least j distinct pairs of critical points.

3 Main Results

Now, we list our assumptions on f and F .
(H1) There exists a positive constant c1 such that

|f(t, u)− f(t, v)| ≤ c1|u− v|, ∀u, v ∈ H and t ∈ [1, T ].

(H2) There exist a > 0 and µ ∈ (0, 2) such that lim sup
|u|→∞

F (t,u)
|u|µ ≤ a, ∀u ∈ H and t ∈

[1, T ].
(H3) There is a positive constant q1 such that lim

|u|→0

F (t,u)
|u|2 = q1,∀u ∈ H and t ∈ [1, T ].

(H4) There is a positive constant q2 such that lim inf
|u|→0

F (t,u)
|u|2 ≥ q2,∀u ∈ H and t ∈ [1, T ].

(H5) F (t, u) is even with respect to u, i.e., F (t,−u) = F (t, u) for u ∈ H and t ∈ [1, T ].
Theorem 3.1 Suppose that (H1) holds. Then (1.1) has precisely one solution for

λ ∈ (0, λ1
c1

).
Proof Put

(L1(u), v) =
T+1∑
t=1

∆u(t− 1)∆v(t− 1), (L2(u), v) =
T+1∑
t=1

f(t, u(t))v(t), for every u, v ∈ H.

Clearly, L1 : H → H is a linear bounded operator, so demicontinuous. By (H1), (2.2) and
Cauchy-Schwarz inequality, we see

|(L2(u1)−L2(u2), v)| ≤
T+1∑
t=1

|f(t, u1(t))− f(t, u2(t))||v(t)|

≤
T+1∑
t=1

c1|u1(t)− u2(t)||v(t)| ≤ λ−1
1 c1‖u1 − u2‖‖v‖,∀u1, u2, v ∈ H.

(3.1)

Consequently, L2 : H → H is continuous, so demicontinuous. Therefore, L := L1 − λL2

form H to H is demicontinuous. From (H1) and f(t, 0) = 0, we see there is a c2 > 0 such
that

|f(t, u)| ≤ c1|u|+ c2, ∀u ∈ H and t ∈ [1, T ]. (3.2)

It follows from (2.2), (3.2) and Cauchy-Schwarz inequality that

|(L2(u), v)| ≤
T+1∑
t=1

|f(t, u(t))||v(t)| ≤
(

T+1∑
t=1

|f(t, u(t))|2
) 1

2
(

T+1∑
t=1

|v(t)|2
) 1

2

≤
(

T+1∑
t=1

(2c2
1|u(t)|2 + 2c2

2)

) 1
2
(

T+1∑
t=1

|v(t)|2
) 1

2

≤
√

2
λ1

(
c1λ

− 1
2

1 ‖u‖+ c2

√
T + 1

)
‖v‖ < ∞.

(3.3)
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Therefore, L is bounded. By (3.2) again, we get

(L (u), u) =
T+1∑
t=1

|∆u(t− 1)|2 − λ

T+1∑
t=1

f(t, u(t))u(t)

≥ ‖u‖2 − λ

T+1∑
t=1

(c1|u(t)|+ c2)|u(t)| ≥ (1− λc1

λ1

)‖u‖2 − λc2√
λ1

√
T + 1‖u‖.

Therefore, lim
‖u‖→∞

(L (u),u)
‖u‖ = +∞. Finally, by (H1), we arrive at

(L (u)−L (v), u− v)

=
T+1∑
t=1

|∆u(t− 1)−∆v(t− 1)|2 − λ

T+1∑
t=1

(f(t, u(t))− f(t, v(t)))(u(t)− v(t))

≥‖u− v‖2 − λc1

λ1

‖u− v‖2 > 0, ∀u, v ∈ H and u 6= v.

Hence, Lemma 2.1 implies the equation L (u) = 0 has precisely one solution u ∈ H. Equiv-
alently, (1.1) has only a solution u ∈ H.

Theorem 3.2 Suppose that (H2) holds. Then (1.1) has a solution for all λ > 0.
Proof By (H2), we see there is a b > 0 such that

F (t, u) ≤ a|u|µ + b,∀u ∈ H and t ∈ [1, T ]. (3.4)

Consequently, we have by Hölder inequality

J(u) =
1
2

T+1∑
t=1

|∆u(t− 1)|2 − λ

T∑
t=1

F (t, u(t))

≥ 1
2
‖u‖2 − λ

T∑
t=1

(a|u(t)|µ + b) ≥ 1
2
‖u‖2 − λa

(
T∑

t=1

(|u(t)|µ)
2
µ

)µ
2
(

T∑
t=1

1

)1−µ
2

− λbT

≥ 1
2
‖u‖2 − λaλ

−µ
2

1 T
2−µ

2 ‖u‖µ − λbT.

(3.5)
Therefore, µ ∈ (0, 2) implies J(u) is coercive, i.e., lim

‖u‖→∞
J(u) = +∞. Since H is a real

reflexive finite dimensional Banach space and J ∈ C1(H,R), so J is weakly lower semi-
continuous on H. Lemma 2.2 leads to there is a u0 ∈ H such that J(u0) = inf

H
J(u) and

J ′(u0) = 0, hence (1.1) has at least one solution.
Theorem 3.3 Suppose that (H2) and (H3) hold. Then (1.1) has at least three solutions

for λ ∈ ( λi

2q1
, λi+1

2q1
) (i = 1, 2, · · · , T − 1).

Proof Recall that in the finite dimensional setting, it is well-known that a coercive
functional satisfies (PS) condition. By (H2), we see J is coercive, i.e., lim

‖u‖→∞
J(u) = +∞.

So (PS) condition is spontaneously satisfied for J .
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By (H3), for ε ∈ (0, q1), there exists ρ > 0 such that

(q1 − ε)|u|2 ≤ F (t, u(t)) ≤ (q1 + ε)|u|2, for |u| ≤ ρ, t ∈ [1, T ]. (3.6)

For u ∈ X = span{φ1, · · · , φi} with 0 < ‖u‖ ≤ ρ, we see

J(u) =
1
2

T+1∑
t=1

|∆u(t− 1)|2 − λ

T∑
t=1

F (t, u(t))

≤ 1
2
‖u‖2 − λ

T∑
t=1

(q1 − ε)|u(t)|2 ≤
(

1
2
− λ(q1 − ε)

λi

)
‖u‖2.

(3.7)

Thus, for λ > λi

2(q1−ε)
, we have J(u) < 0 for u ∈ X with 0 < ‖u‖ ≤ ρ.

On the other hand, for u ∈ W = span{φi+1, · · · , φT} with 0 < ‖u‖ ≤ ρ,

J(u) =
1
2

T+1∑
t=1

|∆u(t− 1)|2 − λ

T∑
t=1

F (t, u(t))

≥ 1
2
‖u‖2 − λ

T∑
t=1

(q1 + ε)|u(t)|2 ≥
(

1
2
− λ(q1 + ε)

λi+1

)
‖u‖2,

(3.8)

the for λ < λi+1

2(q1+ε)
, we have J(u) > 0 for u ∈ W with 0 < ‖u‖ ≤ ρ. So, by Lemma 2.3, for

ε ∈ (0, q1), if λ ∈ ( λi

2(q1−ε)
, λi+1

2(q1+ε)
), J has at least three critical points. By the arbitrariness

of ε, we get for λ ∈ ( λi

2q1
, λi+1

2q1
)(i = 1, 2, · · · , T − 1), (1.1) possesses at least three solutions.

Theorem 3.4 Suppose that (H2), (H4) and (H5) hold. Then (1.1) has i(i = 1, 2, · · · , T )
pairs of nontrivial solutions for λ ∈ (0, λi

2q2
).

Proof J(u) is an even functional on H by (H5). As in Theorem 3.3, J satisfies (PS)
condition from (H2). If we choose K = X ∩ ∂Bρ, then K is homeomorphic to Si−1 by an
odd map. By (H4), there is a ρ > 0 such that F (t, u) ≥ q2|u|2 for |u| ≤ ρ and t ∈ [1, T ]. So
for x ∈ K, we see

J(u) =
1
2

T+1∑
t=1

|∆u(t− 1)|2 − λ

T∑
t=1

F (t, u(t))

≤ 1
2
‖u‖2 − λ

T∑
t=1

q2|u(t)|2 ≤
(

1
2
− λq2

λi

)
ρ2,

(3.9)

so for λ < λi

2q2
, we have supK J(u) < 0. Therefore, by Lemma 2.4, J has at least i pairs of

nontrivial critical points, i.e., (1.1) has i pairs of nontrivial solutions.
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一类二阶差分方程边值问题解的存在性
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摘要: 本文研究了一个二阶差分方程边值问题解的存在性问题. 利用临界点理论和变分方法, 获得了

几个解的存在性结果, 推广了一些现有的结果.
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