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Abstract: This paper studies the construction of confidence region for quantiles with random

right censored variables. By combining empirical likelihood method and censored values estimation

method, we obtain an empirical log-likelihood ratio statistics about quantiles. In weaker conditions,

that the limiting distribution of the statistics is Chi-square distribution with one degree of freedom

is proved. The makes the inference of empirical likelihood for quantiles from complete data to

incomplete data.
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1 Introduction

Quantile is an important population characteristic. In some instances the quantile
approach is feasible and useful when other approaches are out of the question. For example,
to estimate the parameter of a Cauchy distribution, with density f(x) = 1/π[1 + (x −
µ)2],−∞ < x < ∞, the sample mean X is not a consistent estimate of the location parameter
µ. However, the sample median θ1/2 is AN(µ, π2/4n) and thus quite well-behaved.

Let X1, X2, · · · , Xn be a random sample from the unknown distribution F (x) with
density f(x). Given 0 < q < 1, we define the q-th quantile by F−1(q) = inf{x : F (x) > q}.

In this paper, we investigate how to apply empirical likelihood methods for inference
about θq = F−1(q) under right censorship. Assume that the variable X is censored randomly
on the right by some censoring variable C and hence cannot be observed completely. One
observes only

Y = min{X, C}, δ = I(X ≤ C), (1.1)

where I(A) is the indicator function of event A. Supposed that, C is independent of X. The
observations are {Yi, δi}n

i=1, which is a random sample from the population (Y, δ).
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Empirical likelihood methods were first used by Thomas and Grunkemeier [1] and pop-
ularized by Owen [2–3]. It is well-known that Owen’s empirical likelihood is based on linear
constraints and hence has very general applicability such as in smooth functions of means
(see DiCiccio et al. [4]), quantile estimation (see Chen [5]), estimating equation (see Qin and
Lawless [6] ), empirical likelihood confidence interval (see [7–16]) and so on. For more details,
we refer to Owen [17]. However, most of the references on empirical likelihood are concerned
with complete data set. In practice, censoring data occurs in opinion polls, market research
surveys, mail enquires, social-economic investigations, medical studies and other scientific
experiments. Once the censoring values are imputed, the data set can then be analyzed
using standard techniques for complete data.

The rest of this paper is arranged as follows. In Section 2, we propose a empirical
likelihood method to quantiles. We obtain the empirical log-likelihood ratio statistics of the
quantiles and show that it is asymptotically chi-square. The proof is arranged to Section 3.

2 Methodology and Main Results

If θq is q-quantile for F (x), we know that θq coincides with the M -estimates defined by
the equation

E[φ(X − θq)] =
∫ ∞

−∞
φ(x− θq)dF (x) = 0 (2.1)

with

φ(z) =

{
− 1, z ≤ 0,

q/(1− q), z > 0.

Let Ui(θq) = φ(Yi−θq)δi

1−G(Yi)
, where G(·) is the cumulative distribution function of the censor-

ing variable C. Obviously {Ui(θq)}n
i=1 are independent and identically distributed random

variables. Furthermore,

E(Ui(θq)) = E

[
φ(Yi − θq)δi

1−G(Yi)

]
= E[φ(X − θq)] = 0.

Thus, following the idea of Owen [2] an empirical likelihood-ratio function can similarly be
defined for θq as

R(θq) = sup
p1,··· ,pn

{
n∏

i=1

(npi) :
n∑

i=1

pi = 1,

n∑
i=1

piUi(θq) = 0

}
. (2.2)

However, we cannot use R(θq) directly to make inference on θq since the distribution
function G(·) of {Zi}n

i=1 is unknown. To do this, it is natural to replace G(·) by the Kaplan-
Meier estimator

Ĝn(y) = 1−
n∏

i=1

[
n− i

n− i + 1

]I{Y(i)≤y,δi=0}
, (2.3)
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where Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) is the order statistics of Yi’s. Let Ûi(θq) = φ(Yi−θq)δi

1−Ĝn(Yi)
, then an

estimated empirical log-likelihood ratio function can be defined as

log R̂(θq) = sup
p1,··· ,pn

{
n∑

i=1

log(npi) :
n∑

i=1

pi = 1,

n∑
i=1

piÛi(θq) = 0

}
. (2.4)

By the method of Lagrange multiplier for (2.4), we may prove that the maximization
point occurs with

pi =
1
n
{1 + λ(θq)Ûi(θq)}−1, i = 1, · · · , n, (2.5)

where λ(θq) is the solution to

1
n

n∑
i=1

Ûi(θq)
1 + λ(θq)Ûi(θq)

= 0. (2.6)

By (2.4) and (2.5), we can obtain

log R̂(θq) = −
n∑

i=1

log{1 + λ(θq)Ûi(θq)}. (2.7)

Theorem 2.1 If E(U2
i (θq)) < ∞ and θq is the true q-quantile of F (·), we have

−2 log R̂(θq) −→L χ2
1, (2.8)

where →L represents the convergence in distribution, χ2
1 is standard Chi-square random

variable with 1 degree of freedom.
Remark On the basis of Theorem 2.1, −2 log R̂(θq) can be used to construct a confi-

dence region for θq,

Îα(θq) = {θq : −2 log R̂(θq) ≤ cα},

with P (χ2
1 ≤ cα) = 1 − α. Then by Theorem 2.1, Îα(θq) gives a confidence interval for θq

with asymptotically correct coverage probability 1− α.

3 Proof of Theorem 2.1

Throughout this section, we use c > 0 to represent any constant which may take different
values for each appearance.

Lemma 3.1 Under the assumptions of Theorem 2.1, if θq is the true q-quantile of F (·),
we have

1√
n

n∑
i=1

Ûi(θq) −→L N(0, v2
q), (3.1)

where v2
q = E(U2

i (θq)).
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Proof By the definition of Ûi(θq), it is easy to show that

1√
n

n∑
i=1

Ûi(θq) =
1√
n

n∑
i=1

Ui(θq) +
1√
n

n∑
i=1

(Ûi(θq)− Ui(θq))

=
1√
n

n∑
i=1

Ui(θq) +
1√
n

n∑
i=1

Ui(θq)
Ĝn(Yi)−Gn(Yi)

1− Ĝn(Yi)
.

Since {Ui(θq)}n
i=1 are independent and identically distributed random variables and E(U2

i (θq)) <

∞. They imply 1√
n

n∑
i=1

|Ui(θq)| = O(1). Zhou [18] proved

sup
Yi≤Y(n)

∣∣∣∣
Ĝn(Yi)−Gn(Yi)

1− Ĝn(Yi)

∣∣∣∣ = Op(n−1/2), (3.2)

where Y(n) = max
1≤i≤n

Yi. So we have

1√
n

n∑
i=1

Ui(θq)
Ĝn(Yi)−Gn(Yi)

1− Ĝn(Yi)
= op(1).

By the central limit theory of independent and identically distributed random variables,

1√
n

n∑
i=1

Ui(θq) −→L N(0, v2
q).

This completes the proof.
Lemma 3.2 Under the assumptions of Theorem 2.1, if θq is the true q-quantile of

F (·), we have
1
n

n∑
i=1

Û2
i (θq) −→P v2

q . (3.3)

Proof By the definition of Ûi(θq), it is easy to show that

1
n

n∑
i=1

Û2
i (θq) =

1
n

n∑
i=1

U2
i (θq) +

1
n

n∑
i=1

(Ûi(θq)− Ui(θq))2

+
2
n

n∑
i=1

Ui(θq)(Ûi(θq)− Ui(θq)) =: I1 + I2 + I3.

Next, from the law of large numbers and (3.2), we can get n−1
n∑

i=1

U2
i (θq) → E(U2

i (θq)), a.s.,

then we have

I2 =
1
n

n∑
i=1

(Ûi(θq)− Ui(θq))2 =
1
n

n∑
i=1

U2
i (θq)

∣∣∣∣
Ĝn(Yi)−Gn(Yi)

1− Ĝn(Yi)

∣∣∣∣
2

= op(1).
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By using the similar arguments as I2 = op(1), we can also obtain I3 = op(1). So, the law of
large numbers implies that

1
n

n∑
i=1

Û2
i (θq) =

1
n

n∑
i=1

U2
i (θq) + op(1) −→p v2

q .

This completes the proof.
Lemma 3.3 Under the assumptions of Theorem 2.1, if θq is the true q-quantile of

F (·), we have
max
1≤i≤n

|Ûi(θq)| = op(n1/2), λ(θq) = Op(n−1/2). (3.4)

Proof It is well known that for any sequence of independent and identically distributed
random variables {ξ}n

i=1 with E(ξ2
i ) < ∞, we have

max
1≤i≤n

|ξi|√
n
−→ 0.

This implies that max
1≤i≤n

|Ui(θq)| = op(n1/2). From (3.2), we have

max
1≤i≤n

|Ûi(θq)| = max
1≤i≤n

|Ui(θq)| ·
∣∣∣∣
Ĝn(Yi)−Gn(Yi)

1− Ĝn(Yi)

∣∣∣∣ + max
1≤i≤n

|Ui(θq)| = op(n1/2).

Next, we prove λ(θq) = Op(n−1/2). Let λ(θq) = α|λ(θq)|, where α = 1 or −1. Note

Λ̄ = 1
n

n∑
i=1

Ûi(θq), Λ∗ = max
1≤i≤n

|Ûi(θq)|, S = 1
n

n∑
i=1

Û2
i (θq). From (2.6), we have

0 =
1
n

n∑
i=1

Ûi(θq)
1 + λ(θq)Ûi(θq)

=
1
n

n∑
i=1

αÛi(θq)
1 + |λ(θq)|αÛi(θq)

=
1
n

n∑
i=1

αÛi(θq)− |λ(θq)| · 1
n

n∑
i=1

Û2
i (θq)

1 + |λ(θq)|αÛi(θq)

≤ αΛ̄− |λ(θq)|
1 + |λ(θq)|Λ∗ ·

1
n

n∑
i=1

Û2
i (θq) = αΛ̄− |λ(θq)|

1 + |λ(θq)|Λ∗ · S,

where we have used 0 < 1 + λ(θq)Ûi(θq) ≤ 1 + |λ(θq)|Λ∗, which yields from

pi =
1
n

(1 + λ(θq)Ûi(θq))−1 ≥ 0.

Therefore, |λ(θq)|(S−αΛ̄Λ∗) ≤ |αΛ̄|. By Lemma 3.1 and Lemma 3.2, we know Λ∗ = op(n1/2)
and Λ = Op(n−1/2), we have |λ(θq)|(S+op(1)) ≤ |αΛ̄|. Lemma 3.2 implies that S = Σ+op(1),
hence |λ(θq)| = Op(n−1/2). This completes the proof.

Proof of Theorem 2.1 Applying a Taylor expansion to equation (2.6) and (2.7), we
can obtain

−2 log R̂(θq) = 2
n∑

i=1

log{1 + λ(θq)Ûi(θq)}

= 2λ(θq)
n∑

i=1

Ûi(θq)− λ2(θq)
n∑

i=1

Û2
i (θq) + rn, (3.5)
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where

|rn| = C

n∑
i=1

|λ(θq)Ûi(θq)|3 ≤ |λ(θq)|3 max
1≤i≤n

|Ûi(θq)|
n∑

i=1

Û2
i (θq)

= Op(n−3/2) · op(n1/2) ·Op(n−1) = op(1).

From (2.6), we can get

0 =
n∑

i=1

Ûiθq)
1 + λ(θq)Ûi(θq)

=
n∑

i=1

{
1− λ(θq)Ûi(θq) +

[λ(θq)Ûi(θq)]2

1 + λ(θq)Ûi(θq)

}
Ûi(θq)

=
n∑

i=1

Ûi(θq)− λ(θq)
n∑

i=1

Û2
i (θq) +

n∑
i=1

λ2(θq)Û3
i (θq)

1 + λ(θq)Ûi(θq)
. (3.6)

From Lemma 3.2 and Lemma 3.3, by simple calculation, we have

n∑
i=1

λ2(θq)Û3
i (θq)

1 + λ(θq)Ûi(θq)
= op(n1/2).

It follows that

λ(θq) =

n∑
i=1

Ûi(θq)

n∑
i=1

Û2
i (θq)

+ op(n−1/2).

Furthermore, from (3.6), we can get that

λ(θq)
n∑

i=1

Ûi(θq)− λ2(θq)
n∑

i=1

Û2
i (θq) = op(1). (3.7)

By (3.5), (3.6) and (3.7), we have

−2 log R̂(θq) = λ(θq)
n∑

i=1

Ûi(θq) + op(1)

=

(
1√
n

n∑
i=1

Ûi(θq)

)2

×
(

1
n

n∑
i=1

Û2
i (θq)

)−1

+ op(1) →L χ2
1.

This completes the proof.

References

[1] Thomas D R, Grunkemeier G L. Confidence interval estimation of survival probabilities for censored

data[J]. Journal of the American Statistical Association, 1975, 70(352): 865–871.

[2] Owen A B. Empirical likelihood ratio confidence intervals for a single function[J]. Biometrika,

1988,75(2): 237–249.



No. 5 Empirical likelihood inference for quantiles with random right censored data 855

[3] Owen A. Empirical likelihood ratio confidence regions[J]. The Annals of Statistics, 1990, 18(1):

90–120.

[4] DiCiccio T, Hall P, Romano J. Empirical likelihood is Bartlett-correctable[J]. The Annals of Statis-

tics, 1991, 19(2): 1053–1061.

[5] Chen S X, Hall P. Smoothed empirical likelihood confidence intervals for quantiles[J]. The Annals

of Statistics, 1993, 21: 1166–1181.

[6] Qin J, Lawless J F. Empirical likelihood and general estimating equations[J]. The Annals of Statis-

tics, 1994, 22(1): 300–325.

[7] DiCiccio T J, Romano J P. Nonparametric confidence limits by resampling methods and least

favorable families[J]. Int Statist Rev., 1990, 58: 59–76.

[8] Jing B Y, Wood A T A. Exponential empirical likelihood is not Bartlett correctable[J]. The Annals

of Statistics, 1996, 24(1): 365–369.

[9] Xue L G, Zhu L. Empirical likelihood for single-index models[J]. Journal of Multivariate Analysis,

2006, 97(6): 1295–1312.

[10] Xue L G, Zhu L X. Empirical likelihood for a varying coefficient model with longitudinal data[J].

Journal of the American Statistical Association, 2007,102(478): 642–654.

[11] Zhu L X, Xue L G. Zhu L, Xue L. Empirical likelihood confidence regions in a partially linear

single-index model[J]. Journal of the Royal Statistical Society: Series B, 2006, 68(3): 549–570.

[12] Wu C. Some algorithmic aspects of the empirical likelihood method in survey sampling[J]. Statistica

Sinica, 2004, 14(4): 1057–1067.

[13] Shi J, Lau T S. Shi J, Lau T S. Empirical likelihood for partially linear models[J]. Journal of

Multivariate Analysis, 2000, 72(1): 132–148.

[14] Wang Q H, Jing B Y. Empirical likelihood for partial linear models[J]. Annals of the Institute of

Statistical Mathematics, 2003, 55(3): 585–595.

[15] Zhou M. Some properties of the Kaplan-Meier estimator for independent nonidentically distributed

random variables[J]. The Annals of Statistics, 1991, 19: 2266–2274.

[16] Cheng P E. Nonparametric estimation of mean functionals with data missing at random[J]. Journal

of the American Statistical Association, 1994, 89(425): 81–87.

[17] Owen A B. Empirical likelihood[M]. London: Chapman and Hall/CRC, 2010.

[18] Zhou M. Asymptotic normality of the synthetic estimator for censored survival data[J]. The Annals

of Statistics, 1992, 20(2): 1002–1021.

具有随机右删失随机变量分位数的经验似然推断

刘常胜 ,李永献

(河南城建学院数理系,河南平顶山 467036)

摘要: 本文研究了具有随机右删失随机变量分位数的置信域的构造. 利用经验似然和截尾值估算相结

合的方法, 给出了分位数的对数经验似然比统计量, 在较少的条件下证明了该统计量的极限分布为自由度

为1 的χ2 分布. 使得完全数据下的分位数的经验似然推断方法应用到非完全数据中.
关键词: 经验似然; 右删失; 置信区间; χ2分布
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