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Abstract: Let F be a field, l2m(F ) a maximal nilpotent subalgebra of the orthogonal Lie

algebra of Dm type. The aim of this paper is to characterize every linear map of l2m(F ) which

preserves zero Lie brackets in both directions when m ≥ 5. By using the main theorem of the paper

[7] and the skill of matrix computation, it is proved that a linear map ϕ of l2m(F ) preserves zero

Lie brackets in both directions if and only if ϕ is the product of an inner automorphism, a graph

automorphism, a generalized diagonal automorphism, a central map, a sub-central automorphism,

an extremal map and a scalar multiplication. This extends the main result of the paper [7].
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1 Introduction

One of the most active and fertile subjects in matrix theory during the past one hundred
years is the linear preserver problem (LPP). The earliest paper on such problem dates back
to 1897 (see [1]), and a great deal of effort were devoted to the study of this type of question
since then. One may consult the survey paper [2–3] for details. It is one of the important
linear preserver problems to classify commutativity preserving linear maps on matrix spaces
or algebras. A linear map ϕ on an algebra or a matrix space A is said to be commutativity
preserving in both directions when the condition ab = ba holds if and only if ϕ(a)ϕ(b) =
ϕ(b)ϕ(a). Commutativity preserving linear maps on spaces of matrices or operators were
considered by several authors, see [4–12]. There are several motivations to study this kind of
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maps. Problems concerning commutativity preserving maps are closely related to the study
of Lie homomorphisms. Every associative algebra A becomes a Lie algebra if we introduce
the Lie bracket [a, b] by [a, b] = ab− ba for a, b ∈ A. A linear map φ : A → B is called a Lie
homomorphism if φ([a, b]) = [φ(a), φ(b)] for every pair a, b ∈ A. It is clear that every Lie
homomorphism preserves commutativity. The assumption of preserving commutativity can
be reformulated as the assumption of preserving zero Lie brackets. Let L be a Lie algebra
over a field, ϕ a linear map of L. We say that ϕ preserves zero Lie brackets in both directions
if for every pair x, y ∈ L, we have [x, y] = 0 if and only if [ϕ(x), ϕ(y)] = 0. Choi et al.[6]
mentioned that the results on linear maps preserving commutativity can be viewed in the
content of Lie algebra, where one assumes that the linear map preserves zero products and
the conclusion is that the map“essentially”preserves all products. Marcoux and Sourour
[8] also pointed out that the linear maps that preserve zero Lie brackets in both directions
differ only slightly from those that preserve all Lie brackets. But this assertion is not true
here. In this paper, we obtain three types of linear maps which preserve zero Lie brackets
in both directions but fail to preserve all Lie brackets.

Let F be an arbitrary field and F ∗ the group consisting of all non-zero elements of
F . Let F m×n denote the set of all m × n matrices over F , E(n) the n × n identity matrix
(E(m) is abbreviated to E), gl(n, F ) the general linear Lie algebra over F . For A ∈ F n×n,
A
′

denotes the transpose of A. Let T (n, F ) (resp., S(n, F )) be the subalgebra of gl(n, F )
consisting of all upper triangular (resp., strictly upper triangular) matrices, T ∗(n, F ) the

group consisting of all invertible elements in T (n, F ). Set I =

[
0 E

E 0

]
. The orthogonal

algebra o(2m,F ) is defined to be the subalgebra of gl(2m,F ) consisting of all X ∈ gl(2m,F )
satisfying X ′I = −IX. Let

l2m(F ) =

{[
A B

0 −A′

]
| A ∈ S(m,F ), B ∈ F m×m, B′ = −B

}
.

It is a maximal nilpotent subalgebra of o(2m,F ). In this paper, by using the main theorem
of [7], we shall describe all the linear maps preserving zero Lie brackets in both directions
of l2m(F ) when m ≥ 5. The main idea of this paper is to reduce the problem on l2m(F ) to
that on S(m,F ).

2 Preliminaries

For 1 ≤ i, j ≤ m, let Eij denote the 2m×2m matrix whose (i, j)-entry is 1 and all other
entries are 0; Ei,−j the 2m × 2m matrix whose (i, j + m)-entry is 1 and all other entries
are 0; E−i,j the 2m × 2m matrix whose (i + m, j)-entry is 1 and all other entries are 0;
E−j,−i the 2m× 2m matrix whose (j + m, i + m)-entry is 1 and all other entries are 0. For
1 ≤ i, j ≤ m, let eij denote the m ×m matrix whose (i, j)-entry is 1 and all other entries
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are 0. For a ∈ F, 1 ≤ i < j ≤ m, set

Tij(a) = a(Eij − E−j,−i), Tij = {Tij(a) | a ∈ F};
Ti,−j(a) = a(Ei,−j − Ej,−i), Ti,−j = {Ti,−j(a) | a ∈ F}.

Let l
(1)
2m(F ) = [l2m(F ), l2m(F )], l

(2)
2m(F ) = [l2m(F ), l(1)2m(F )], · · · , l

(k)
2m(F ) = [l2m(F ), l(k)

2m(F )],
· · · , and denote

p(F ) = T1m +
∑

1≤i<j≤m,i+j≤m+1

Ti,−j , u(F ) =
∑

1≤i<j≤m,i+j≤m

Ti,−j ,

x(F ) =
∑

1≤i<j≤m−1

Ti,−j , y(F ) = x(F ) + T1m + T1,−m,

q(F ) = y(F ) + T2m + T2,−m, z(F ) =
∑

1≤i<j≤m

Ti,−j +
∑

1≤i≤m−1

Tim,

s(F ) = z(F ) + T1,m−1.

Let t(F ) =

{[
A 0
0 −A

′

] ∣∣∣∣ A ∈ S(m,F )

}
, w(F ) =

{[
0 B

0 0

]
| B ∈ F m×m, B

′
= −B

}
,

v(F ) =
{
diag(A, 0,−A

′
, 0)|A ∈ S(m− 1, F )

}
. Then l2m(F ) = t(F ) + w(F ).

Let L be a Lie algebra. The center of L is z(L) = {z ∈ L | [x, z] = 0 for all x ∈ L}, the
centralizer of a subset X of L is CL(X) = {x ∈ L | [x,X] = 0}. It is easy to know that the
center of l2m(F ) is l

(2m−4)
2m (F ) which is equal to T1,−2, and the center of q(F ) is x(F ). The

centralizer of p(F ) (resp., u(F ); resp., x(F )) in l2m(F ) is y(F ) (resp., s(F ); resp., z(F )).
Denote by T the set of all linear maps of l2m(F ) that preserve zero Lie brackets in

both directions and by T ′
the set of all bijections in T . Denote by 1 the identity map

on l2m(F ). It is clear that for ϕ ∈ T and a linear function f from l2m(F ) to F , the map
ϕ + f : X 7→ ϕ(X) + f(X)T1,−2(1) is in T .

The following lemma is obvious.
Lemma 2.1 (i) If ϕ ∈ T , then Kerϕ ⊆ T1,−2.
(ii) ϕ ∈ T ′

if and only if ϕ(T1,−2(1)) 6= 0.
(iii) If ϕ ∈ T ′

, then ϕ(T1,−2(1)) = T1,−2(c) for some c ∈ F ∗.

3 Standard Maps of t(F )

It is obvious that t(F ) is isomorphic to S(m,F ). Cao et al.[7] have described the linear
maps preserving commutativity in both directions on S(m,F ). We now transfer them to
t(F ) for later use. t(F ) has the following standard maps that preserve zero Lie brackets in
both directions.

(a) ψt,c : X 7→ cX, where c is a constant in F ∗.

(b) InttP : X 7→ P−1XP , where P =

[
A 0
0 A

′−1

]
with A ∈ T ∗(m,F ).

(c) ηt,f : X 7→ X + f(X)T1m(1), where f : t(F ) → F is a linear function.
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(d) ω = 1 or ω : X =

[
A 0
0 −A

′

]
7→

[
−RA

′
R 0

0 RAR

]
with R = e1m + e2,m−1 +

· · ·+ em−1,2 + em1.
(e) µ

(ij)
t,b for b ∈ F , i = 1,m and j = 1, 2 are defined by

µ
(11)
t,b : X =

∑
1≤i<j≤m

Tij(aij) 7→ X + T2m(ba12);

µ
(m1)
t,b : X =

∑
1≤i<j≤m

Tij(aij) 7→ X + T1,m−1(bam−1,m);

µ
(12)
t,b : X =

∑
1≤i<j≤m

Tij(aij) 7→ X + T2m(ba13) + T3m(ba12);

µ
(m2)
t,b : X =

∑
1≤i<j≤m

Tij(aij) 7→ X + T1,m−2(bam−1,m) + T1,m−1(bam−2,m).

We call the linear maps of types (a)–(e) defined above standard maps of t(F ). By
Lemma 2.2 [7], 2.3 [7] and Theorem 1.1 [7], we have the following theorem.

Theorem 3.1 Let m ≥ 5. Then a linear map ϕ of t(F ) preserves commutativity in
both directions if and only if ϕ is of the form

ϕ = ψt,cInttTωµ
(m2)
t,b4

µ
(12)
t,b3

µ
(m1)
t,b2

µ
(11)
t,b1

ηt,f ,

where ψt,c, InttT, ω, µ
(m2)
t,b4

, µ
(12)
t,b3

, µ
(m1)
t,b2

, µ
(11)
t,b1

, ηt,f are the standard maps of t(F ).

4 Standard Maps of l2m(F )

It is obvious that T ′
forms a group under multiplication of maps. We now define some

standard maps of l2m(F ) which preserve zero Lie brackets in both directions, then we use
them to prove the main theorem of this paper. It is easy to check that the following linear
maps of l2m(F ) are all in T when m ≥ 5.

(1) Inner automorphisms

For A ∈ T ∗(m,F ) and B
′
= −B ∈ F m×m, set X =

[
A AB

0 A
′−1

]
. The map IntX : Y 7→

X−1Y X is an automorphism of l2m(F ), called the inner automorphism of l2m(F ) induced
by X.

(2) Graph automorphisms
Let π = E(2m) − Emm − E−m,−m + Em,−m + E−m,m. The map µπ : Y 7→ πY π is an

automorphism of l2m(F ), called the graph automorphism of l2m(F ).
(3) Generalized diagonal automorphisms
For g ∈ F ∗, let G = diag(E, gE). The map ξg : l2m(F ) → l2m(F ) defined by Y 7→

G−1Y G is an automorphism of l2m(F ), called the generalized diagonal automorphism of
l2m(F ) induced by G.

(4) Central maps
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Let f be a linear map from l2m(F ) to F , we define the map ηf : l2m(F ) → l2m(F ) by
ηf (Y ) = Y + f(Y )T1,−2(1). It is easy to check that ηf ∈ T , called the central map. If f

satisfies the additional conditions: f([X, Y ]) = 0 for any X, Y ∈ l2m(F ) and 1+f(T1,−2(1)) 6=
0, then ηf is also a Lie automorphism of l2m(F ).

(5) Sub-central automorphisms
For h ∈ F , Y =

∑
1≤i<j≤m

Tij(aij) +
∑

1≤k<l≤m

Tk,−l(ak,−l) ∈ l2m(F ). The map λh :

l2m(F ) → l2m(F ) defined by λh(Y ) = Y + T1,−3(ha23) is an automorphism of l2m(F ), called
the sub-central automorphism of l2m(F ) induced by h.

(6) Extremal maps
For a, b, c ∈ F , Y =

∑
1≤i<j≤m

Tij(aij)+
∑

1≤k<l≤m

Tk,−l(ak,−l) ∈ l2m(F ), we define the map

ρa,b,c : l2m(F ) → l2m(F ) by

ρa,b,c(Y ) = Y + T1,−3(aa13 + ca24) + T1,−4(ba13 + ca23)− T2,−3(aa23 + ba24).

It is easy to check that ρa,b,c ∈ T ′
, but it usually fails to be an automorphism of l2m(F ). We

call it the extremal map of type I.
(7) Scalar multiplication
For c ∈ F ∗, we define the map ψc : l2m(F ) → l2m(F ) by ψc(X) = cX. Clearly, ψc ∈ T ′

,
called the multiple map. It is easy to see that ψc is an automorphism of l2m(F ) if and only
if c = 1.

Lemma 4.1 (i) ξgIntT1 = IntT2ξg, where T2 = ξg(T1).
(ii) ξgλh1 = λh2ξg, where h2 = gh1.
(iii) ξgρa1,b1,c1 = ρa2,b2,c2ξg, where a2 = ga1, b2 = gb1, c2 = gc1.
(iv) IntTµπ = µπIntT for T = diag(A, 1, A

′−1, 1) with A ∈ T ∗(m− 1, F ).
(v) ψc commutes with every linear map on l2m(F ). In particular, ψc commutes with

every standard map.
Proof The proof is trivial, we omit it.

5 Lemmas and the Proof of Main Theorem

Let ϕ be a linear map preserving zero Lie brackets in both directions. Throughout this
section, without loss of generality, we assume that ϕ is bijective and m ≥ 5. In fact, if ϕ

is not bijective, we have ϕ(T1,−2(1)) = 0 by Lemma 2.1. Let f be a linear function from
l2m(F ) to F such that f(T1,−2(1)) 6= 0, then ϕ + f ∈ T ′

again by Lemma 2.1. Thus ϕ can
be replaced with ϕ+ f . For X ∈ l2m(F ), we denote by C(X) the centralizer of X in l2m(F ),
i.e., C(X) = {Y ∈ l2m(F ) | [X, Y ] = 0}. In order to prove the main result in this paper, we
need to give some lemmas first.

Lemma 5.1 Let ϕ ∈ T ′
, then p(F ) and y(F ) are stable under ϕ.

Proof If we can prove that p(F ) is invariant under ϕ, then y(F ), being the centralizer
of p(F ) in l2m(F ), is also invariant under ϕ. So for our goal, it suffices to prove that p(F ) is
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invariant under ϕ. It is clear that the set

B = {Ti,−j(1), T1m(1)|1 ≤ i < j ≤ m, i + j ≤ m + 1}

is the canonical basis of p(F ), so we only need to show that ϕ(X) ∈ p(F ) for all X ∈ B. It
is not difficult to check that dim C(X) ≥ (m − 1)m − (m − 2) for any X ∈ B. Since ϕ is
bijective and preserves zero Lie brackets in both directions, we have

dim C(ϕ(X)) = dim C(X) ≥ (m− 1)m− (m− 2). (5.1)

In the following, we prove that ϕ(X) ∈ p(F ) for all X ∈ B by two steps.
Step 1 ϕ(X) ∈ w(F ) + T1m for all X ∈ B.
If there exists some X ∈ B such that ϕ(X) /∈ w(F ) + T1m, then we can assume that

ϕ(X) =
∑

1≤i<j≤m Tij(aij) + W with some ast 6= 0 for 1 ≤ s < t ≤ m, (s, t) 6= (1,m) and
W ∈ w(F ). Let i0, j0 be such that ai0j0 6= 0, (i0, j0) 6= (1,m) and ai0,k = 0 for all k < j0 and
ak,j0 = 0 for all k > i0. Set

M1 = E(2m) −
m−j0∑
k=1

Tj0,j0+k(a−1
i0j0

ai0,j0+k),

M2 = E(2m) +
i0−1∑
k=1

Tki0(a
−1
i0j0

akj0),

v0 =
m−j0∑
k=1

Tj0,j0+k +
i0−1∑
l=1

Tl,−j0 +
j0−1∑

l=i0+1

Tl,−j0 +
m−j0∑
h=1

Tj0,−(j0+h) +
i0−1∑
k=1

Tki0 .

Then v0 is a subspace of l2m(F ) and v0 ∩ C((M1M2)−1ϕ(X)M1M2) = {0}. It is clear that
dim v0 ≥ m− 1. So

dim C(ϕ(X)) = dim C((M1M2)−1ϕ(X)M1M2) ≤ m(m− 1)− (m− 1). (5.2)

In contradiction with (5.1). So ϕ(X) ∈ w(F ) + T1m for all X ∈ B.
Step 2 ϕ(X) ∈ p(F ) for all X ∈ B.
By Step 1, we know that ϕ(X) ∈ w(F ) + T1m for all X ∈ B. If there exists some

X ∈ B such that ϕ(X) ∈ w(F ) + T1m but ϕ(X) /∈ p(F ), then we may write ϕ(X) =∑
1≤i<j≤m Ti,−j(bi,−j) + T1m(b1m), and there exist some bp,−q 6= 0 with p + q > m + 1 and

p < q. Let p0, q0 be such that bp0,−q0 6= 0 and bp0,−k = 0 for all k > q0 and bk,−q0 = 0 for all
k > p0. Set

N1 = E(2m) +
p0−1∑
k=1

Tk,p0(b
−1
p0,−q0

bk,−q0),

N2 = E(2m) −
p0−1∑
k=1

Tk,q0(b
−1
p0,−q0

bk,−p0) +
q0−1∑

k=p0+1

Tk,q0(b
−1
p0,−q0

bp0,−k).
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Then the entries of N−1
2 N−1

1 ϕ(X)N1N2 in the p0-th row, q0-th row, (p0 +m)-th column and
(q0 + m)-th column are all zero except the (p0, q0 + m)-entry and (q0, p0 + m)-entry. Let

v1 = T1p0 + · · ·+ Tp0−1,p0 + T1q0 + · · ·+ Tp0−1,q0 + Tp0+1,q0 + · · ·+ Tq0−1,q0 .

Then v1 is a subspace of l2m(F ). One may check that v1 ∩ C(N−1
2 N−1

1 ϕ(X)N1N2) = {0}
and dim v1 = p0 − 1 + q0 − 2 > m− 2. So

dim C(ϕ(X)) = dim C(N−1
2 N−1

1 ϕ(X)N1N2) < m(m− 1)− (m− 2). (5.3)

In contradiction with (5.1). So ϕ(X) ∈ p(F ) for all X ∈ B.
Since B is a basis of p(F ) and ϕ is a bijective linear map, we have ϕ(p(F )) = p(F ).

That is to say p(F ) is stable under ϕ.
Lemma 5.2 Let ϕ ∈ T ′

, then l
(k)
2m(F ) is invariant under ϕ for every 1 ≤ k ≤ 2m − 4.

Furthermore, s(F ), being the centralizer of u(F ) which exactly is l
(m−1)
2m (F ), is also invariant

under ϕ.
Proof The process, being similar to Lemma 5.1, is omitted.
Lemma 5.3 Let ϕ ∈ T ′

, then q(F ), x(F ) and z(F ) are invariant under ϕ.
Proof If we can prove that q(F ) is invariant under ϕ, then x(F ), being the center of

q(F ), is invariant under ϕ. Furthermore, z(F ), being the centralizer of x(F ) in l2m(F ), is also
invariant under ϕ. For our goal, we only need to prove that q(F ) is invariant under ϕ. Let
ϕ ∈ T ′

. Since ϕ(y(F )) = y(F ) ⊆ q(F ), it suffices to prove that ϕ(T2m(1)) and ϕ(T2,−m(1))
are all contained in q(F ). Since T2m(1) ∈ l

(m−3)
2m (F ) and Tm−2,−(m−1)(1) ∈ y(F ), we may

assume that

ϕ(T2m(1)) ≡ T1,m−1(a1,m−1) + T2m(a2m) + T2,−m(a2,−m) (mod y(F )),

ϕ(Tm−2,−(m−1)(1)) =
∑

1≤i<j≤m−1

Ti,−j(bi,−j) + T1,−m(b1,−m) + T1m(b1m),

where bm−2,−(m−1) 6= 0. By considering the action of ϕ on [T2m(1), Tm−2,−(m−1)(1)] = 0, we
have a1,m−1bm−2,−(m−1) = 0, so a1,m−1 = 0. That is to say ϕ(T2m(1)) ∈ q(F ). We can also
prove that ϕ(T2,−m(1)) ∈ q(F ) in the similar way. So ϕ(q(F )) ⊆ q(F ). Since ϕ is invertible,
we have ϕ(q(F )) = q(F ).

Now we give the main result of this paper.
Theorem 5.4 Let m ≥ 5. A linear map ϕ of l2m(F ) preserves zero Lie brackets in

both directions if and only if ϕ is of the form

ϕ = ψc(µπ)δIntXλhρa,b,cφdξgηf , (5.4)

where ψc, µπ, IntX, λh, ρa,b,c, φd, ξg, ηf are the standard maps preserving zero Lie brackets in
both directions, δ = 0 or 1.

Proof The“if”part of the theorem is clear. For the “only if” part, we will give the
proof by steps. In the following, we assume that m ≥ 5 and ϕ ∈ T ′

.
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Step 1 There exist X1 = diag(A, 1, A
′−1, 1) with A ∈ T ∗(m− 1, F ) and c1 ∈ F ∗ such

that Int−1X1ψ
−1
c1

ϕ(Tij(1)) ≡ Tij(1) (mod s(F )) for 1 ≤ i < j ≤ m− 1.
Since z(F ) is an ideal of l2m(F ) and stable under ϕ, then ϕ induces a linear map ϕ

of l2m(F )/z(F ) by ϕ(Y ) = ϕ(Y ), where Y = Y + z(F ) ∈ l2m(F )/z(F ), Y ∈ l2m(F ). It
can be proved that ϕ is invertible and preserves zero Lie brackets in both directions. Since
l2m(F )/z(F ) is isomorphic to v(F ), we may directly view l2m(F )/z(F ) as v(F ). Thus by
Theorem 3.1, ϕ can be written in the form:

ϕ = ψv,c1IntvX1ωµ
(m2)
v,b4

µ
(12)
v,b3

µ
(m1)
v,b2

µ
(11)
v,b1

ηv,f ,

where ψv,c1 , IntvX1, ω, µ
(m2)
v,b4

, µ
(12)
v,b3

, µ
(m1)
v,b2

, µ
(11)
v,b1

, ηv,f are the standard maps of v(F ). It is

easy to see that ψv,c1 = ψc1 , IntvX1 = IntX1. So Int−1X1ψ−1
c1

ϕ = ωµ
(m2)
v,b4

µ
(12)
v,b3

µ
(m1)
v,b2

µ
(11)
v,b1

ηv,f .
Denote Int−1X1ψ

−1
c1

ϕ by ϕ1.
We are now ready to prove that ω = 1, b4 = b3 = b2 = b1 = 0. Since x(F ) and p(F ) are

stable under ϕ1, T2,−(m−1)(1) ∈ x(F ) ∩ p(F ), we may write

ϕ1(T2,−(m−1)(1)) =
∑

1≤i<j≤m−1,i+j≤m+1

Ti,−j(ai,−j),

where a2,−(m−1) 6= 0. If ω 6= 1, we have

ϕ1(T13(1)) ≡ −T1,m−2(b3)− f(T13(1))T1,m−1(1)− Tm−2,m−1(1) (mod z(F )).

From [T13(1), T2,−(m−1)(1)] = 0, we have [ϕ1(T13(1)), ϕ1(T2,−(m−1)(1))] = 0, which implies
that a2,−(m−1) = 0, a contradiction. So ω = 1.

Since x(F ) is stable under ϕ1, we may write

ϕ1(Tm−2,−(m−1)(1)) =
∑

1≤i<j≤m−1

Ti,−j(bi,−j),

where bm−2,−(m−1) 6= 0. By considering the action of ϕ1 on [T12(1), Tm−2,−(m−1)(1)] = 0, we
have bm−2,−(m−1)b3 = bm−2,−(m−1)b1 = 0, which implies that b1 = b3 = 0.

Because x(F ) and u(F ) are stable under ϕ1, T2,−(m−2) ∈ x(F ) ∩ u(F ), we may write

ϕ1(T2,−(m−2)(1)) =
∑

1≤i<j≤m−1,i+j≤m

Ti,−j(ci,−j).

Since [ϕ1(T2,−(m−2)(1)), ϕ1(T1,m−2(1))] 6= 0, we have c2,−(m−2) 6= 0. By applying ϕ1 on
[Tm−3,m−1(1), T2,−(m−2)(1)] = 0 and [Tm−2,m−1(1), T2,−(m−2)(1)] = 0, respectively, we have
b4c2,−(m−2) = b2c2,−(m−2) = 0, which implies that b4 = b2 = 0. So ϕ1 = ηv,f , as desired.

Step 2 There exist a graph automorphism µπ and a generalized diagonal automorphism
ξg such that ξ−1

g (µ−1
π )δϕ1(T1,−m(1)) ≡ T1,−m(1) (mod x(F )), where δ = 0 or δ = 1.

Since y(F ) is stable under ϕ1 and T1,−m(1) ∈ y(F ), we may assume that

ϕ1(T1,−m(1)) ≡ T1m(a) + T1,−m(b) (mod x(F )), where a, b ∈ F.



No. 5 Maps preserving zero Lie brackets on a maximal nilpotent subalgebra · · · 837

It is easy to see that a and b can not be zero simultaneously. Since q(F ), z(F ) and l
(m−4)
2m (F )

are stable under ϕ1, T2,−m(1) ∈ q(F ), T3,−m(1) ∈ z(F ) ∩ l
(m−4)
2m (F ), we may write

ϕ1(T2,−m(1)) ≡ T2m(c) + T2,−m(d) (mod y(F )),

ϕ1(T3,−m(1)) ≡ T3m(e) + T3,−m(f) (mod q(F )),

where c, d, e, f ∈ F . By applying ϕ1 on [T1,−m(1), T2,−m(1)] = 0, [T2,−m(1), T3,−m(1)] = 0
and [T1,−m(1), T3,−m(1)] = 0, respectively, we get ad + bc = 0, cf + de = 0 and af + be = 0.
If ab 6= 0, then cd 6= 0 and ef 6= 0. So we have





a
b

= − c
d
,

a
b

= − e
f
,

e
f

= − c
d
,

which implies that c
d

= − c
d
. That is to say cd = 0. This contradiction shows that ab = 0.

If a 6= 0 and b = 0, let g = a and δ = 1; if b 6= 0 and a = 0, let g = b and δ = 0. Then

ξ−1
g (µ−1

π )δϕ1(T1,−m(1)) ≡ T1,−m(1) (mod x(F )),

where (µ−1
π )1 = µ−1

π , (µ−1
π )0 = 1. Denote ξ−1

g (µ−1
π )δϕ1 by ϕ2.

Step 3 There exists X2 = E(2m) + P2, P2 ∈
∑

2≤k≤m−1 T1k such that w(F ) is stable

under Int−1X2ϕ2. In particular, Int−1X2ϕ2(Ti,−m(1)) ≡ Ti,−m(a(i)
i,−m) (mod x(F )), where

a
(1)
1,−m = 1, a

(i)
i,−m ∈ F ∗ for 2 ≤ i ≤ m− 1.

If we can prove the latter assertion, then we shall get the former one by the fact
that Int−1X2ϕ2(x(F )) = x(F ) and the latter assertion. Since z(F ) is stable under ϕ2 and
Ti,−m(1) ∈ z(F ), we may assume that

ϕ2(Ti,−m(1)) ≡
m−1∑
k=1

(Tkm(a(i)
km) + Tk,−m(a(i)

k,−m)) (mod x(F )),

where 2 ≤ i ≤ m − 1. For 2 ≤ k 6= i ≤ m − 1, by applying ϕ2 on [Tk−1,k(1), Ti,−m(1)] = 0,

we have a
(i)
km = a

(i)
k,−m = 0. By considering the action of ϕ2 on [T1,−m(1), Ti,−m(1)] = 0, and

[Ti,−m(1), Tm−1,−m(1)] = 0, we obtain that a
(i)
im = 0 and a

(i)
1m = a

(m−1)
1m = 0. Since Ti,−m(1) /∈

y(F ), we have a
(i)
i,−m 6= 0. Set X2 = E(2m) + T12(a

(2)
1,−m(a(2)

2,−m)−1) + T13(a
(3)
1,−m(a(3)

3,−m)−1) +
· · ·+ T1,m−1(a

(m−1)
1,−m (a(m−1)

m−1,−m)−1) and denote Int−1X2ϕ2 by ϕ3. We see that ϕ3(Ti,−m(1)) ≡
Ti,−m(a(i)

i,−m) (mod x(F )), where a
(1)
1,−m = 1 and a

(i)
i,−m ∈ F ∗ for 2 ≤ i ≤ m− 1.

Step 4 There exist X3 = diag(A,A
′−1) with A ∈ T ∗(m,F ) and c2 ∈ F ∗ such that

ψ−1
c2

X3ϕ3(Tij(1)) ≡ Tij(1) (mod w(F ) + T1m) for 1 ≤ i < j ≤ m.

By Step 3, we know that w(F ) is stable under ϕ3, so ϕ3 induces a linear map ϕ̃3

of l2m(F )/w(F ) by ϕ̃3(X̃) = ϕ̃3(X) for X̃ = X + w(F ) ∈ l2m(F )/w(F ). It is not diffi-
cult to prove that ϕ̃3 is bijective and preserves zero Lie brackets in both directions. Since
l2m(F )/w(F ) is isomorphic to t(F ), we may directly view l2m(F )/w(F ) as t(F ). Thus by
Theorem 3.1, ϕ̃3 can be written in the form:

ϕ̃3 = ψt,c2InttX3ωµ
(m2)
t,b4

µ
(12)
t,b3

µ
(m1)
t,b2

µ
(11)
t,b1

ηt,f ,
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where ψt,c2 , InttX3, ω, µ
(m2)
t,b4

, µ
(12)
t,b3

, µ
(m1)
t,b2

, µ
(11)
t,b1

, ηt,f are the standard maps of t(F ). It is easy

to know that ψ̃c2 = ψt,c2 , ĨntX3 = InttX3. So ˜Int−1X3ψ−1
c2

ϕ3 = ωµ
(m2)
t,b4

µ
(12)
t,b3

µ
(m1)
t,b2

µ
(11)
t,b1

ηt,f .

Denote Int−1X3ψ
−1
c2

ϕ3 by ϕ4.
If ω 6= 1, then ϕ4(T1,m−1(1)) ≡ −f(T1,m−1(1))T1m(1) − T2m(1) (mod w(F )). It is easy

to see that ϕ4(T1,−m(1)) = T1,−m(a) + X0 for some X0 ∈ x(F ) and a ∈ F ∗. By applying ϕ4

on [T1,m−1(1), T1,−m(1)] = 0, we get a = 0, a contradiction. So ω = 1.
Since w(F ) is stable under ϕ4, we may write

ϕ4(Tm−1,−m(1)) =
∑

1≤i<j≤m

Ti,−j(ai,−j),

where am−1,−m 6= 0. By applying ϕ4 on [T12(1), Tm−1,−m(1)] = 0, we have am−1,−mb1

= am−1,−mb3 = 0, which implies that b1 = b3 = 0. Since Tm−2,−(m−1)(1) ∈ x(F ), we may
write ϕ4(Tm−2,−(m−1)) =

∑
1≤i<j≤m−1 Ti,−j(bi,−j), where bm−2,−(m−1) 6= 0. By applying ϕ4

on [Tm−2,m(1), Tm−2,−(m−1)(1)] = 0 and [Tm−1,m(1), Tm−2,−(m−1)(1)] = 0, respectively, we
get bm−2,−(m−1)b4 = bm−2,−(m−1)b2 = 0, which implies that b4 = b2 = 0. So ϕ̃4 = ηt,f , as
desired.

Step 5 There exist X4 = E(2m) +
∑

2≤i≤m−1 T1i((b
(i)
i,−m)−1b

(i)
1,−m) and X5 = E(2m) +

f(T12(1))T2m(1) such that Int−1X5Int−1X4ϕ4(Tij(1)) ≡ Tij(1) (mod w(F )) for 1 ≤ i < j ≤
m.

Since w(F ) is stable under ϕ4, we may suppose that

ϕ4(Ti,−m(1)) ≡
m−1∑
k=1

Tk,−m(b(i)
k,−m) (mod x(F )) for 2 ≤ i ≤ m− 1.

By applying ϕ4 on [Tim(1), Ti,−m(1)] = 0, we have that b
(i)
k,−m = 0 for 2 ≤ k ≤ m − 1 and

k 6= i. Since y(F ) is stable under ϕ4 and Ti,−m(1) /∈ y(F ), we have that b
(i)
i,−m 6= 0. Set

X4 = E(2m) +
∑

2≤i≤m−1 T1i((b
(i)
i,−m)−1b

(i)
1,−m). We see that

Int−1X4ϕ4(Ti,−m(1)) ≡ Ti,−m(b(i)
i,−m) (mod x(F )) for 2 ≤ i ≤ m− 1.

Denote Int−1X4ϕ4 by ϕ5. We can write

ϕ5(T2,−m(1)) =
∑

1≤i<j≤m−1

Ti,−j(bi,−j) + T2,−m(b(2)
2,−m).

For 3 ≤ i < j ≤ m− 1, by applying ϕ5 on [Tij(1), T2,−m(1)] = 0 and [T2j(1), T2,−m(1)] = 0,
respectively, we get f(Tij(1)) = f(T2j(1)) = 0 and bk,−l = 0 for 1 ≤ k ≤ 3, 4 ≤ l ≤ m − 1
and 4 ≤ k < l ≤ m − 1. By applying ϕ5 on [T1i(1), T2,−m(1)] = 0, we have f(T1i(1)) = 0
for 4 ≤ i ≤ m − 1. By applying ϕ5 on [Tim(1), Ti,−m(1)] = 0 for 2 ≤ i ≤ m − 1, we have
f(Tim(1)) = 0. By applying ϕ5 on [T23(1), Tm−1,−m(1)] = 0 and [T13(1), Tm−1,−m(1)] = 0,
respectively, we have f(T23(1)) = f(T13(1)) = 0. By considering the action of ϕ5 on [T3m(1)−
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T3,m−1(1), T2,−m(1)+T2,−(m−1)(1)] = 0 and [T1m(1)−T1,m−1(1), T2,−m(1)+T2,−(m−1)(1)] = 0,
we have f(T1m(1)) = 0. Let X5 = E(2m) + f(T12(1))T2m(1). Then we have

Int−1X5ϕ5(Tij(1)) ≡ Tij(1) (mod w(F )) for 1 ≤ i < j ≤ m.

Denote Int−1X5ϕ5 by ϕ6.
Step 6 There exist h ∈ F , X6 = E(2m) + W with W ∈ w(F ) and a, b, c ∈ F such that

ρ−1
a,b,cλ

−1
h Int−1X6ϕ6(Tij(1)) ≡ Tij(1) (mod T1,−2) for 1 ≤ i < j ≤ m.

Suppose that

ϕ6(Ti,i+1(1)) = Ti,i+1(1) +
∑

1≤k<l≤m

Tk,−l(a
(i)
k,−l), 1 ≤ i ≤ m− 1,

where a
(i)
k,−l ∈ F . For 1 ≤ t ≤ m−1 and t 6= i−1, i+1, by applying ϕ6 on [Ti,i+1(1), Tt,t+1(1)] =

0, we have a
(i)
t+1,−l = 0 for t + 2 ≤ l ≤ m, l 6= i and a

(i)

k,−(t+1) = 0 for 1 ≤ k ≤ t− 1, k 6= i. By
considering the action of ϕ6 on [T12(1), T13(1)] = 0, [T13(1), T14(1)] = 0 and [T12, T14] = 0,
respectively, we have a

(1)
2,−3 = 0 and a

(1)
3,−4 = 0. By applying ϕ6 on [T23(1), T14(1)] = 0,

we have a
(2)
3,−4 = 0 and a

(2)
4,−5 = 0. For 3 ≤ k ≤ m − 1, by considering the action of ϕ6

on [T2,k+1(1), Tk,k+1(1)] = 0, we get a
(k)

1,−(k+1) = a
(k)

k+1,−(k+2) = 0. For 3 ≤ k ≤ m − 2, by

applying ϕ6 on [Tk,k+1(1), Tk−1,k+2(1)] = 0, we obtain a
(k)

1,−(k+2) = a
(k)

k+2,−(k+3) = 0.
For j 6= i− 1, i + 1, by considering the action of ϕ6 on [Ti,i+1(1), Tj,j+1(1)] = 0, we get

a
(i)
i,j+1 = a

(j)
i+1,j . Choose

X6 = E(2m) +
m∑

k=3

T1,−k(a
(k−1)
1,k−1) +

∑
2≤i<j≤m

Ti,−j(a
(i−1)
i−1,j), h = a

(2)
1,−3.

Then

λ−1
h Int−1X6ϕ6(T12(1)) = T12(1) + T1,−2(a

(1)
1,−2),

λ−1
h Int−1X6ϕ6(T23(1)) = T23(1) + T1,−2(a

(2)
1,−2) + T2,−3(a

(2)
2,−3) + T1,−4(a

(2)
1,−4),

λ−1
h Int−1X6ϕ6(Ti,i+1(1)) = Ti,i+1(1) + T1,−2(a

(i)
1,−2) + Ti,−(i+1)(a

(i)

i,−(i+1)), 3 ≤ i ≤ m− 1.

Denote λ−1
h Int−1X6ϕ6 by ϕ7.

Now we may assume that

ϕ7(Tij(1)) = Tij(1) +
∑

1≤k<l≤m

Tk,−l(b
(ij)
k,−l), 1 ≤ i ≤ m− 2, i + 2 ≤ j ≤ m,

where b
(ij)
k,−l ∈ F . For 1 ≤ t ≤ m−1, t 6= i−1, j, 2 ≤ s ≤ m, 3 ≤ p ≤ m, s, p 6= i, by applying

ϕ7 on [Tt,t+1(1), Tij(1)] = 0, [T1s(1), Tij(1)] = 0 and [T2p(1), Tij(1)] = 0, respectively, we have

ϕ7(T13(1)) = T13(1) + T1,−2(b
(13)
1,−2) + T1,−3(b

(13)
1,−3) + T1,−4(b

(13)
1,−4) + T2,−4(b

(13)
2,−4),

ϕ7(T14(1)) = T14(1) + T1,−2(b
(14)
1,−2) + T1,−4(b

(14)
1,−4) + T2,−3(b

(14)
2,−3),

ϕ7(T24(1)) = T24(1) + T1,−2(b
(24)
1,−2) + T1,−3(b

(24)
1,−3) + T2,−3(b

(24)
2,−3) + T2,−4(b

(24)
2,−4),

ϕ7(Tkl(1)) = Tkl(1) + T1,−2(b
(kl)
1,−2) + Tk,−l(b

(kl)
k,−l), k = 1, 2, 5 ≤ l ≤ m,

ϕ7(Tij(1)) = Tij(1) + T1,−2(b
(ij)
1,−2) + T1,−i(b

(ij)
1,−i) + Ti,−j(b

(ij)
i,−j), 3 ≤ i < j ≤ m, j 6= i + 1.
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By applying ϕ7 on [T12(1), T13(1)] = 0 and [T12(1), T14(1)] = 0, respectively, we have
b
(13)
2,−4 = b

(14)
2,−3 = 0. For 1 ≤ i < j ≤ m, 1 ≤ k < j ≤ m, k 6= i, 4 ≤ j ≤ m, by applying ϕ7

on [Tij(1), Tkj(1)] = 0, we obtain that b
(ij)
i,−j = 0 and a

(i)

i,−(i+1) = 0. For 3 ≤ i < j ≤ m and

j 6= i + 1, by applying ϕ7 on [T2i(1) + T2,j−1(1), Tij(1)− Tj−1,j(1)] = 0, we get b
(ij)
1,−i = 0.

By applying ϕ7 on [T13(1), T23(1)] = 0, [T13(1), T24(1)] = 0 and [T23(1), T24(1)] = 0,
respectively, we get b

(13)
1,−3 = −a

(2)
2,−3, b

(13)
1,−4 = −b

(24)
2,−3 and b

(24)
1,−3 = a

(2)
1,−4. Let a = b

(13)
1,−3,

b = b
(13)
1,−4, c = a

(2)
1,−4. Then

ρ−1
a,b,cϕ7(Ti,i+1(1)) = Ti,i+1(1) + T1,−2(a

(i)
1,−2) for 1 ≤ i ≤ m− 1,

ρ−1
a,b,cϕ7(Tij(1)) = Tij(1) + T1,−2(b

(ij)
1,−2) for 1 ≤ i < j ≤ m− 1, j 6= i + 1.

That is to say

ρ−1
a,b,cϕ7(Tij(1)) ≡ Tij(1) (mod T1,−2) for 1 ≤ i < j ≤ m.

Denote ρ−1
a,b,cϕ7 by ϕ8.

Step 7 There exist some d, s ∈ F ∗, X7 = E(2m) + T1m(s−1d) and a linear map f from
l2m(F ) to F such that ξ−1

s IntX7ϕ8 = ηf .

Now we assume that ϕ8(Ti,−j(1)) =
∑

1≤k<l≤m

Tk,−l(c
(ij)
k,−l). For 2 ≤ k ≤ m, k 6= i, j,

2 ≤ t ≤ m− 1, t + 1 6= i, j, by applying ϕ8 on [T1k(1), Ti,−j(1)] = 0, [Tt,t+1(1), Ti,−j(1)] = 0
and [Tij(1), Ti,−j(1)] = 0, respectively, we get

ϕ8(T1,−2(1)) = T1,−2(c
(12)
1,−2),

ϕ8(Ti,−j(1)) = Ti,−j(c
(ij)
i,−j) + T1,−2(c

(ij)
1,−2) for 1 ≤ i ≤ 2, i < j ≤ m and (i, j) 6= (1, 2),

ϕ8(Ti,−j(1)) = Ti,−j(c
(ij)
i,−j) + T1,−2(c

(ij)
1,−2) + T1,−i(c

(ij)
1,−i) for 3 ≤ i < j ≤ m.

For 3 ≤ i < j ≤ m− 1, by applying ϕ8 on

[Ti−1,i(1)− Tj,j+1(1), Ti,−j(1) + Ti−1,−(j+1)(1)] = 0,

we obtain c
(ij)
1,−i = 0. For 3 ≤ i < k ≤ m− 1, by considering the action of ϕ8 on

[T2i(1)− T2k(1), Ti,−m(1) + Tk,−m(1)] = 0,

we get that c
(im)
1,−i = c

(3m)
1,−3 for 4 ≤ i ≤ m− 1.

For 3 ≤ l 6= k ≤ m, by applying ϕ8 on

[T2l(1)− T2k(1), T1,−l(1) + T1,−k(1)] = 0,

we get c
(1l)
1,−l = c

(1k)
1,−k.

For 2 ≤ i < k < l ≤ m, by applying ϕ8 on [T1k(1)− T1l(1), Ti,−k(1) + Ti,−l(1)] = 0, we
have c

(ik)
i,−k = c

(il)
i,−l. By applying ϕ8 on

[T13(1) + T23(1), T1,−3(1) + T2,−3(1)] = 0,
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and
[T12(1)− T13(1), T2,−4(1) + T3,−4(1)] = 0,

we obtain c
(13)
1,−3 = c

(23)
2,−3 and c

(24)
2,−4 = c

(34)
3,−4. By applying ϕ8 on

[T12(1) + T1j(1), T2,−k(1) + Tk,−j(1)] = 0

with 4 ≤ k < j ≤ m, we get c
(2k)
2,−k = c

(kj)
k,−j . So all c

(ij)
i,−j are equal for 1 ≤ i < j ≤ m except

(i, j) = (1, 2). Let d = c
(3m)
1,−3 , s = c

(ij)
i,−j , X7 = E(2m) + T1m(s−1d), then

ξ−1
s IntX7ϕ8(T1,−2(1)) = T1,−2(s−1c

(12)
1,−2),

ξ−1
s IntX7ϕ8(T2,−m(1)) = T2,−m(s−1c

(2m)
1,−2 − d),

ξ−1
s IntX7ϕ8(Ti,−j(1)) = Ti,−j(1) + T1,−2(s−1c

(ij)
1,−2) for 1 ≤ i < j ≤ m, (i, j) 6= (1, 2), (2,m).

It is easy to see that

ξ−1
s IntX7ϕ8(Ti,i+1(1)) = Ti,i+1(1) + T1,−2(s−1a

(i)
1,−2) for 1 ≤ i ≤ m− 1,

ξ−1
s IntX7ϕ8(Tij(1)) = Tij(1) + T1,−2(s−1b

(ij)
1,−2) for 1 ≤ i < j ≤ m, j 6= i + 1.

Let f(Ti,i+1(1)) = s−1a
(i)
1,−2, f(T1,−2(1)) = s−1c

(12)
1,−2 − 1, f(T2,−m(1)) = s−1c

(2m)
1,−2 − d,

f(Tij(1)) = s−1b
(ij)
1,−2, j 6= i + 1, f(Tk,−l(1)) = s−1c

(kl)
1,−2, k, l 6= (1, 2), (2,m). Then

ξ−1
s IntX7ϕ8 = ηf .

Above discussion shows that

ϕ = ψc1IntX1(µπ)δξgψc2Int(X2X3X4X5X6X7)λhρa,b,cξsηf .

By Lemma 4.1, it is easy to show that ϕ is of form (5.4). This completes the proof.
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Dm型正交代数的极大幂零子代数上保零李括积的映射

赵延霞a ,韩学锋b

(河南理工大学 a. 数学与信息科学学院; b. 人事处, 河南焦作 454000)

摘要: 令F 表示任意域, l2m(F )表示F上Dm型正交李代数的极大幂零子代数. 本文的目的是当m ≥
5时, 刻画l2m(F )上的每一个双向保零李括积的映射. 利用文献[7]的主要结果和矩阵计算技巧, 本文证明

了l2m(F )上的一个线性映射ϕ 是双向保零李括积的当且仅当ϕ 能够写成内自同构, 图自同构, 广义的对角自

同构, 中心映射, 次中心自同构, 极端映射和标量乘法的乘积. 这推广了文献[7]的主要结果.
关键词: 极大幂零子代数; 零李括积; Dm型正交李代数
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