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Abstract: Let F' be a field, l2,,(F') a maximal nilpotent subalgebra of the orthogonal Lie
algebra of D,, type. The aim of this paper is to characterize every linear map of Iz, (F) which
preserves zero Lie brackets in both directions when m > 5. By using the main theorem of the paper
[7] and the skill of matrix computation, it is proved that a linear map ¢ of la,, (F') preserves zero
Lie brackets in both directions if and only if ¢ is the product of an inner automorphism, a graph
automorphism, a generalized diagonal automorphism, a central map, a sub-central automorphism,
an extremal map and a scalar multiplication. This extends the main result of the paper [7].
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1 Introduction

One of the most active and fertile subjects in matrix theory during the past one hundred
years is the linear preserver problem (LPP). The earliest paper on such problem dates back
to 1897 (see [1]), and a great deal of effort were devoted to the study of this type of question
since then. One may consult the survey paper [2-3] for details. It is one of the important
linear preserver problems to classify commutativity preserving linear maps on matrix spaces
or algebras. A linear map ¢ on an algebra or a matrix space A is said to be commutativity
preserving in both directions when the condition ab = ba holds if and only if ¢(a)p(b) =
o(b)¢(a). Commutativity preserving linear maps on spaces of matrices or operators were

considered by several authors, see [4-12]. There are several motivations to study this kind of
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maps. Problems concerning commutativity preserving maps are closely related to the study
of Lie homomorphisms. Every associative algebra .4 becomes a Lie algebra if we introduce
the Lie bracket [a,b] by [a,b] = ab — ba for a,b € A. A linear map ¢ : A — B is called a Lie
homomorphism if ¢([a,b]) = [¢(a), d(b)] for every pair a,b € A. Tt is clear that every Lie
homomorphism preserves commutativity. The assumption of preserving commutativity can
be reformulated as the assumption of preserving zero Lie brackets. Let L be a Lie algebra
over a field, ¢ a linear map of L. We say that ¢ preserves zero Lie brackets in both directions
if for every pair z,y € L, we have [z,y] = 0 if and only if [¢(x), p(y)] = 0. Choi et al.[6]
mentioned that the results on linear maps preserving commutativity can be viewed in the
content of Lie algebra, where one assumes that the linear map preserves zero products and
the conclusion is that the map “essentially” preserves all products. Marcoux and Sourour
[8] also pointed out that the linear maps that preserve zero Lie brackets in both directions
differ only slightly from those that preserve all Lie brackets. But this assertion is not true
here. In this paper, we obtain three types of linear maps which preserve zero Lie brackets

in both directions but fail to preserve all Lie brackets.

Let F' be an arbitrary field and F* the group consisting of all non-zero elements of
F. Let F™*" denote the set of all m x n matrices over F, E™ the n x n identity matrix
(E(™ is abbreviated to E), gl(n, F) the general linear Lie algebra over . For A € F"*"
A" denotes the transpose of A. Let T'(n, F) (resp., S(n, F)) be the subalgebra of gl(n, F)
consisting of all upper triangular (resp., strictly upper triangular) matrices, 7*(n, F') the

0 F

group consisting of all invertible elements in T'(n, F'). Set I = z ol The orthogonal
algebra o(2m, F') is defined to be the subalgebra of gl(2m, F') consisting of all X € gl(2m, F)
satisfying X'I = —IX. Let

l2m(F) = {

It is a maximal nilpotent subalgebra of o(2m, F'). In this paper, by using the main theorem

A B
0 A

| Ae S(m,F),Be F™™, B = —B} .

of [7], we shall describe all the linear maps preserving zero Lie brackets in both directions
of lg;, (F) when m > 5. The main idea of this paper is to reduce the problem on Iy, (F) to
that on S(m, F).

2 Preliminaries

For 1 <i,j < m, let E;; denote the 2m x 2m matrix whose (i, j)-entry is 1 and all other
entries are 0; E; _; the 2m x 2m matrix whose (i, j + m)-entry is 1 and all other entries
are 0; E_; ; the 2m x 2m matrix whose (i + m, j)-entry is 1 and all other entries are 0;
E_; _; the 2m x 2m matrix whose (j + m,i + m)-entry is 1 and all other entries are 0. For

1 <14,5 < m, let e;; denote the m x m matrix whose (7, j)-entry is 1 and all other entries
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are 0. Forae F, 1 <1< j <m, set

Tij(a) = a(Eiyj — E_j ), Tij ={Tij(a) | a € F};

Ti—j(a) = a(Ei —j — Ej ), Ti—j ={Tij(a) | a € F}.

Let Iy (F) = [l (F), lom (F)], 15 (F) = [l (F), Iy (F)], -+, 1) (F) = (Lo (F), L5 (F)],
-, and denote
p(F) = Tim+ Z i u(l) = Z Ry
1<i<j<m,i+j<m—+1 1<i<j<m,i+j<m
o(F) = > Ty Y(F) = 2(F) + T + Tt -,
1<i<j<m—1
aq(F) = y(F)+ Tom + To—m, AF)= > T+ Y. T,
1<i<j<m 1<i<m-—1
S(F) = Z(F) + Tl,m—l'
A 0 0 B ,
Let t(F) = , AeSm,F),, w(F)= Be Fm"*™ B =—-B 3,
e<>{O_A“ <m>}w<>{00| }

v(F) = {diag(A4,0,—A",0)|A € S(m —1,F)}. Then lo,(F) = t(F) + w(F).

Let L be a Lie algebra. The center of L is 2(L) ={z € L | [z,2] =0 for all z € L}, the
centralizer of a subset X of L is Cp(X) = {x € L | [z, X] = 0}. It is easy to know that the
center of Iy, (F) is lg:b_‘l)(F) which is equal to T} o, and the center of ¢(F) is x(F'). The
centralizer of p(F') (resp., u(F); resp., z(F)) in Iy, (F) is y(F') (resp., s(F); resp., z(F)).

Denote by 7 the set of all linear maps of I, (F) that preserve zero Lie brackets in
both directions and by 7~ the set of all bijections in 7. Denote by 1 the identity map
on ly,(F). Tt is clear that for ¢ € 7 and a linear function f from I, (F) to F, the map
e+ f:X—pX)+ (X)) 2(1)isin 7.

The following lemma is obvious.

Lemma 2.1 (i) If ¢ € 7, then Kerep C T _».

(ii) ¢ € 7 if and only if (T} _5(1)) # 0.

(iit) If o € T, then (T}, _5(1)) = Ty _(c) for some ¢ € F*.

3 Standard Maps of ¢(F)

It is obvious that ¢(F) is isomorphic to S(m, F'). Cao et al.[7] have described the linear
maps preserving commutativity in both directions on S(m, F'). We now transfer them to
t(F') for later use. t(F') has the following standard maps that preserve zero Lie brackets in
both directions.

(a) . X — cX, where c is a constant in F™.

A 0
0 At
(€) mp: X — X+ f(X)T1,,(1), where f:t(F) — F is a linear function.

(b) Int,P: X — P~'X P, where P = with A € T*(m, F).
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—RA'R 0
0 RAR

A 0

d w=lorw: X =
0 —-A

with R = €1m + €2,m—1 +

st enL—l,? + €ml-
(e) ,ugfg) forbe F,i=1,m and j = 1,2 are defined by

Mg;) 1 X = Z Tij(aij) — X + Top (basz);

1<i<j<m

M%l) (X = Z Tij(aij) = X + T1 m1(bam-—1,m);

1<i<j<m

uﬁf’ X = Z Tij(aij) = X + Tom(baiz) + Tam(bais);

1<i<j<m

MgZQ) X = Z Tij(ai;) = X 4+ T1m—2(bam—1,m) + T1m—1(b0n—2.m)-

1<i<j<m

We call the linear maps of types (a)—(e) defined above standard maps of ¢(F). By
Lemma 2.2 [7], 2.3 [7] and Theorem 1.1 [7], we have the following theorem.

Theorem 3.1 Let m > 5. Then a linear map ¢ of ¢(F') preserves commutativity in
both directions if and only if ¢ is of the form

m2 12 ml 11
p = 1/Jt,c1nttTwu§,b4)ui,b;ui,bz)ui,bl)m,f,

where ¢y ., Int;T, w, ung), ug’lb?, METZ;), ug’lbll), i, are the standard maps of ¢(F).

4 Standard Maps of Iy, (F)

It is obvious that 7~ forms a group under multiplication of maps. We now define some
standard maps of Iy, (F) which preserve zero Lie brackets in both directions, then we use
them to prove the main theorem of this paper. It is easy to check that the following linear
maps of Iy, (F) are all in 7 when m > 5.

(1) Inner automorphisms
A AB

A/—l
X~'Y X is an automorphism of Iy, (F), called the inner automorphism of ls,,(F) induced
by X.

(2) Graph automorphisms

Let 7 = E®™ — B, . — E i+ Epp—on + E_pym. The map pi, : Y +— 7Y7 is an
automorphism of I, (F), called the graph automorphism of ls,, (F).

For A € T*(m,F)and B' = —B € F"™ "™ set X = . The map IntX : Y —

(3) Generalized diagonal automorphisms

For g € F*, let G = diag(F,gFE). The map &, : lop(F) — lom(F) defined by Y —
G7YG is an automorphism of lo,,(F), called the generalized diagonal automorphism of
lom (F') induced by G.

(4) Central maps
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Let f be a linear map from [y, (F') to F, we define the map 7y : lop, (F) — lop (F) by
nr(Y) =Y + f(Y)T1,_2(1). It is easy to check that n; € 7, called the central map. If f
satisfies the additional conditions: f([X,Y]) = 0for any X,Y € ly,,,(F) and 1+ f (77, _2(1)) #
0, then 7y is also a Lie automorphism of ly,, (F).

(5) Sub-central automorphisms

For h € F, Y = > Tijay)+ > Tr—ilag—1) € lom(F). The map A, :

1<i<j<m 1<k<I<m

lom (F) — lop (F) defined by A\, (Y) =Y + 11 _3(hass) is an automorphism of Iy, (F), called
the sub-central automorphism of ly,, (F') induced by h.

(6) Extremal maps

Fora,b,ce F,Y = > Tjlay;)+ >, Ty —i(ar,—1) € loy(F), we define the map

1<i<j<m 1<k<I<m

Pa,b,c - l2m(F) - lZM(F) by
Papc(Y) =Y + T _s(aais + caza) + T1,—a(bars + cass) — To _3(aass + basa).

It is easy to check that p, . € T/, but it usually fails to be an automorphism of l5,, (F'). We
call it the extremal map of type L.

(7) Scalar multiplication

For ¢ € F*, we define the map . : lop, (F) — lo (F) by ¥.(X) = ¢X. Clearly, 1. € T,
called the multiple map. It is easy to see that 1. is an automorphism of Iy, (F) if and only
if c=1.

Lemma 4.1 (i) ,IntTy = IntT{,, where To = £,(T1).

(ii) &gAn, = An,&g, where hy = ghy.

(il1) &gPar br,cr = Pas,ba,cags Where ag = gay, by = gby, co = gey.

(iv) IntTp, = pIntT for T = diag(A,1,A =, 1) with A € T*(m — 1, F).

(v) 1. commutes with every linear map on Iy, (F). In particular, ¢). commutes with
every standard map.

Proof The proof is trivial, we omit it.

5 Lemmas and the Proof of Main Theorem

Let ¢ be a linear map preserving zero Lie brackets in both directions. Throughout this
section, without loss of generality, we assume that ¢ is bijective and m > 5. In fact, if ¢
is not bijective, we have ¢(T; _2(1)) = 0 by Lemma 2.1. Let f be a linear function from
lom(F) to F such that f(Ty_5(1)) # 0, then ¢ + f € T  again by Lemma 2.1. Thus ¢ can
be replaced with ¢+ f. For X € Iy, (F'), we denote by C(X) the centralizer of X in ls,, (F),
ie, C(X) ={Y € ly,(F) | [X,Y] = 0}. In order to prove the main result in this paper, we
need to give some lemmas first.

Lemma 5.1 Let ¢ € 7', then p(F) and y(F) are stable under .

Proof If we can prove that p(F) is invariant under ¢, then y(F’), being the centralizer

of p(F) in Iy, (F), is also invariant under ¢. So for our goal, it suffices to prove that p(F) is
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invariant under ¢. It is clear that the set
B={Ti (1), Tin ()1 S i < j <mii+j<m+1}

is the canonical basis of p(F'), so we only need to show that ¢(X) € p(F) for all X € B. It
is not difficult to check that dim C(X) > (m — 1)m — (m — 2) for any X € B. Since ¢ is
bijective and preserves zero Lie brackets in both directions, we have

dim C(p(X)) =dim C(X) > (m —1)m — (m — 2). (5.1)

In the following, we prove that p(X) € p(F) for all X € B by two steps.

Step1l ¢(X) € w(F) + Ty, for all X € B.

If there exists some X € B such that o(X) ¢ w(F) + T4, then we can assume that
P(X) = > 1 cicjem Lijai;) + W with some ay # 0 for 1 < s <t < m,(s,t) # (1,m) and
W € w(F). Let ig, jo be such that a;,;, # 0, (i, jo) # (1,m) and a;, , = 0 for all £ < jo and
ar,j, = 0 for all & > ig. Set

m—jo
M, = § 0]0+/€ 10J0a10]0+/€)
’Lo 1
2 —1
My = EC™ 4+ T (a;} ang,),
k=1
m—jo io—1 Jo—1 m—jo i9g—1
vo = E T;o]o+k+§ Tigo+ Tl—JoJrE To—Gotny + O, Thio-
l=ip+1 k=1

Then vy is a subspace of la,,(F) and vy N C((M;M3) " p(X)M; M) = {0}. It is clear that
dim vg > m — 1. So

dim C(p(X)) = dim C((M; M) o(X)M M) < m(m —1) — (m —1). (5.2)

In contradiction with (5.1). So ¢(X) € w(F') + Ty, for all X € B.

Step 2 ¢(X) € p(F) for all X € B.

By Step 1, we know that ¢(X) € w(F) + T, for all X € B. If there exists some
X € B such that p(X) € w(F) + T1,n, but o(X) ¢ p(F), then we may write p(X) =
Y i<icj<m Li—j(bi,—j) + Tim(bim), and there exist some b, 4 # 0 with p+¢ > m + 1 and
p < q. Let po, qo be such that b,, _,, # 0 and b,, _, =0 for all k > g and by, _,, = 0 for all
k > pg. Set

po—1

N, = ECm 4 Z Tropo (b — a0 D0 )

po—1 go—1

N2 = E(2m) - Z Tk’vQO (bgo{—qobkv_po Z Tk ‘IO Po, —qo Po _k/)'
k=1

k=po+1
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Then the entries of N; *N; *(X)N, N, in the po-th row, go-th row, (pg +m)-th column and
(go + m)-th column are all zero except the (pg, go + m)-entry and (qo, po + m)-entry. Let

U1 = Tlpo ot TPO*LPO + quo +ooet TPO*lyqo + TP0+1,qo +eet Tq0*1,q0'

Then v, is a subspace of Iy, (F). One may check that v; N C(Ny ' Ny 'o(X)N,Ny) = {0}
and dim vy = pg—1+qgo—2>m —2. So

dim C(p(X)) = dim C(N; 'N; ' o(X)N,Noy) < m(m — 1) — (m — 2). (5.3)

In contradiction with (5.1). So ¢(X) € p(F) for all X € B.

Since B is a basis of p(F) and ¢ is a bijective linear map, we have ¢(p(F)) = p(F).
That is to say p(F’) is stable under .

Lemma 5.2 Let ¢ € T, then I$")(F) is invariant under ¢ for every 1 < k < 2m — 4.
Furthermore, s(F), being the centralizer of u(F) which exactly is 1"~V (F), is also invariant
under .

Proof The process, being similar to Lemma 5.1, is omitted.

Lemma 5.3 Let ¢ € T, then ¢(F), z(F) and z(F) are invariant under ¢.

Proof If we can prove that ¢(F) is invariant under ¢, then z(F'), being the center of
q(F), is invariant under ¢. Furthermore, z(F'), being the centralizer of x(F') in Iy, (F), is also
invariant under ¢. For our goal, we only need to prove that ¢(F) is invariant under ¢. Let
@ €T . Since o(y(F)) = y(F) C q(F), it suffices to prove that ¢(Thy, (1)) and (T, (1))
are all contained in q(F). Since Ton(1) € 1" (F) and Tr—2,—(m-1)(1) € y(F), we may

assume that
O(Tom(1)) = Ty m—1(a1,m—1) + Tom(azm) + T, —m(az,—m) (mod y(F)),

A Tnoomny ()= Y Tij(biy) + Tin(br,—m) + Tim(brm),
1<i<j<m—1

where b,—2 _(m—-1) # 0. By considering the action of ¢ on [T5,(1), Trn—2,—(m-1)(1)] = 0, we
have a1 m—10m—2,—(m-1) = 0, 80 a1 m—1 = 0. That is to say ¢(T5,(1)) € ¢(F). We can also
prove that (75 _,,(1)) € ¢(F) in the similar way. So ¢(¢(F')) C q(F'). Since ¢ is invertible,
we have ¢(q(F)) = q(F).

Now we give the main result of this paper.

Theorem 5.4 Let m > 5. A linear map ¢ of ly,,(F) preserves zero Lie brackets in
both directions if and only if ¢ is of the form

Y = ¢c(Mw)glntX)\hpa,b,cgﬁdggnfv (54)

where 1, fir, Int X, A, pab.c, Pd, g, My are the standard maps preserving zero Lie brackets in
both directions, 6 = 0 or 1.

Proof The “if” part of the theorem is clear. For the “only if” part, we will give the
proof by steps. In the following, we assume that m > 5 and ¢ € 7 .
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Step 1 There exist X; = diag(A4,1,A "', 1) with A € T*(m — 1, F) and ¢; € F* such
that Int™' X194 o(T;;(1)) = T;;(1) (mod s(F)) for 1 <i<j<m—1.

Since z(F') is an ideal of l3,,(F) and stable under ¢, then ¢ induces a linear map @
of lo(F)/2(F) by (V) = @(Y), where Y =Y + 2(F) € lop(F)/2(F), Y € lp(F). Tt
can be proved that © is invertible and preserves zero Lie brackets in both directions. Since
lom (F)/z(F) is isomorphic to v(F), we may directly view la,,(F)/2(F) as v(F). Thus by
Theorem 3.1, ¥ can be written in the form:

i m2 12 ml 11
B = Vo Int, Xywps o) s ),

where 9, .,, Int, X1, w, u%f), uilfi, ,ugjz;), ,ufjlél), 7,5 are the standard maps of v(F'). It is
easy to see that ¥, ., = 1., , Int,X; = IntX;. So Int™' X9 1y = w“%i)NEJI,EQU%:)MSQWJ'
Denote Int ™' X1 ¢ by ¢1.

We are now ready to prove that w = 1, by = bs = by = b; = 0. Since z(F) and p(F') are

stable under @1, Ts _(m—1)(1) € (F) N p(F'), we may write

P1(T2,—(m-1)(1)) = > Ti—j(ai—;),

1<i<j<m—1,i+j<m+1

where as _(m—1) # 0. If w # 1, we have

01(T13(1)) = —Tim—2(b3) = f(T13(1)T1,m—1(1) = Trn—2,m—1(1) (mod 2(F)).

From [T15(1),T5,—(m-1)(1)] = 0, we have [¢1(T13(1)), p1(T%,—(m-1)(1))] = 0, which implies
that az _(m—1) = 0, a contradiction. So w = 1.
Since z(F') is stable under ¢, we may write

1 (T -m-n()) = D> T i),
1<i<j<m—1
where by,—2 _(m—1) # 0. By considering the action of ¢y on [T12(1), Trh—2,—(m—1)(1)] =0, we
have bm,Q,,(mfl)sz, = bm72,7(m71)b1 = 0, which 1mphes that b1 = bg =0.
Because z(F') and u(F) are stable under ¢y, T5 _(m—2) € z(F) Nu(F), we may write

P1(T2,—(m-2)(1)) = > Ti—j(ci—5)-
1<i<j<m—1,i+j<m

Since [¢1(Ts,—(m—-2)(1)), 1(T1,m—2(1))] # 0, we have c3 _(m—2y # 0. By applying ¢; on
(Tn—3m-1(1),To,—(m—2)(1)] = 0 and [T3,—2,m—1(1), T2 —(m-2)(1)] = 0, respectively, we have
bicy,—(m—2) = baca _(m—2) = 0, which implies that by = by = 0. So p1 = 1, , as desired.

Step 2 There exist a graph automorphism p, and a generalized diagonal automorphism
&g such that £ (uz ") 01(T1,-m(1)) = T1 — (1) (mod z(F)), where § =0 or 6 = 1.

Since y(F) is stable under ¢; and T} _,,(1) € y(F), we may assume that

01(Th —m(1)) = Tim(a) + T1,—pm(b) (mod z(F)), where a,b € F.
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It is easy to see that a and b can not be zero simultaneously. Since ¢(F'), z(F') and lé::i_[l) (F)
are stable under ¢y, T _,,(1) € q(F), T5,—n(1) € 2(F) N lé:':l_@ (F), we may write

1(T2,-m (1)) = Tom(c) + Tz, —m(d) (mod y(F)),
¢1(T3,-m (1)) = Tsm(e) + Ts,—m(f) (mod ¢(F)),
where ¢,d,e, f € F. By applying @1 on [T1 (1), T2, (1)] = 0, [T5,—n(1),T5 (1)) =0

and [T1,_, (1), T5_m(1)] = 0, respectively, we get ad + bc =0, c¢f + de =0 and af + be = 0.
If ab # 0, then ¢d # 0 and ef # 0. So we have

c
d
e

-
4
d

o e o

which implies that ¢ = —5. That is to say cd = 0. This contradiction shows that ab = 0.
Ifa#0and b=0,let g=aand § =1;if b#0and a =0, let g=b and § = 0. Then

& (1) 1Ty (1)) = T1 - (1) (mod a(F)),

where (u;')! = prt, (u71)° = 1. Denote &, (1u7") @1 by @a.

Step 3 There exists Xo = E?™ + P, P, € Y ockem_1 Tik such that w(F) is stable
under Int™' X505, In particular, Int™" Xopo(Tj, 0 (1)) = Tiﬁm(agflm) (mod z(F)), where
agl)_ —1a(l . EF*for2<i<m-—1.

If we can prove the latter assertion, then we shall get the former one by the fact
that Int ™' Xy, (2(F)) = z(F) and the latter assertion. Since z(F) is stable under ¢, and
T; —m(1) € 2(F), we may assume that

-1

(T (@) + T, -m(a;),,)) (mod z(F)),

where 2 < i <m —1. For 2 < k # i < m — 1, by applying @2 on [Tj_1x(1),T;_n(1)] =0
we have a\) = a’ )_m = 0. By considering the action of cpg on [T1 (1), T;,—m(1)] = 0, and
(T —m (1), T — (1)] = 0, we obtain that a!”) = 0 and a{”, = a{"™" = 0. Since T —m(1l) ¢
y(F), we have a'”. 0. Set X, = E@™ 4+ Ty5(a 52)7 (agl ) h + T13(a§3) (agj) m) 1Y)+

-~+T1,m_1(a§”1 D(afff 11)7 )~!) and denote Int ™" Xy, by 3. We see that p3(Ti (1)) =
ﬂy_m(agf)_m) (mod z(F)), where a{"’, =1 and aEf)_m e F*for2<i<m-—1.

Step 4 There exist X3 = dlag(A,A/’l) with A € T*(m, F) and ¢; € F* such that
¥ Xaps(T;(1)) = Ti5(1) (mod w(F) + Thyy,) for 1 < i< j <m.

By Step 3, we know that w( ) is stable under @3, so ¢3 induces a linear map @3
of lopm (F)/w(F) by @3(X) = @3( ) for X = X 4+ w(F) € lop(F)/w(F). It is not diffi-
cult to prove that ¢z is bijective and preserves zero Lie brackets in both directions. Since
lom (F)/w(F) is isomorphic to t(F), we may directly view Iy, (F)/w(F) as t(F). Thus by
Theorem 3.1, @3 can be written in the form:

3

@Z(Ti,—m(l))

>
Il

12) (ml1) (11
=y, CzIntthw,ut b4 )/LE b;ai by )NE b1)77t fs
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where vy .,, Int; X3, w, u%f), uglbi), u%zl),ut b1)777t ¢ are the standard maps of ¢(F). It is easy

to know that ¢, = 1.0, ImtX; = Int,X3. So Int~ ngwc2 03 = qu’Zf)pilb?u%;)uilbll)n i f
Denote Int_ngzpc‘ngog by ©4.

If w# 1, then 4(T1m-1(1)) = —f(T1,m—1(1))T1m (1) — T5p (1) (mod w(F)). It is easy
to see that w4(T1 —1n (1)) = T1,—m(a) + Xo for some Xy € z(F') and a € F*. By applying ¢4
on [T1,m-1(1),T1_n(1)] = 0, we get a = 0, a contradiction. So w = 1.

Since w(F') is stable under ¢4, we may write

Pa(Tin-1,-m(1)) = Z Ti—j(ai,—j),

1<i<j<m

where a1 —m # 0. By applying ¢4 on [Ti2(1), Tn—1,—m(1)] = 0, we have ay—1,—mb:
= Qm—1,—mbs = 0, Wthh implies that by = bg = 0. Since T2 _(m—1)(1) € z(F'), we may
write ©4(Tm—2,—(m—1) 21<Z<J<m 1 T —(bi,—;), where by,—o _(m—-1) # 0. By applying ¢4
on [Tm,Q,m(l),Tm,z’,(m,l)( )] = 0 and [T5,—1,m(1), Tin—2,—(m-1)(1)] = 0, respectively, we
get by—o —(m—1)bs = by—2 _(m—1)b2 = 0, which implies that by = by = 0. So @5 = 1., as
desired.

Step 5 There exist Xy, = EC®™ + Y . _ | Tu((bgf’lm)’lbgf)_m) and X5 = EC™ 4
F(T12(1))Topm (1) such that Int ™" XsInt ™' X,04(T3;(1)) = Ti;(1) (mod w(F)) for 1 <i < j <
m.

Since w(F) is stable under ¢4, we may suppose that

m—1
ﬂ7_m E T —TYL (mOd $(F)) for 2 S 7 S m — 1.
k=1

By applying ¢4 on [T}, (1), 15— (1)] = 0, we have that bfj}_m =0for2<k<m-—1and
k # i. Since y(F') is stable under ¢4 and T; _,,(1) ¢ y(F'), we have that bgl)_m # 0. Set
Xy=EC™ 4+ 3% s Tli((bgf)_m)’lbgflm). We see that

It~ Xypa (i (1) = Ti (b)) (mod 2(F)) for 2 <i <m — 1.
Denote Int_1X4<p4 by ¢5. We can write

©5(T2,-m(1)) = Z T —j(bi,—j) + T, m(b L)

1<i<j<m—1

For 3 <i < j <m —1, by applying ¢5 on [T;;(1),T5,_,,(1)] = 0 and [T5;(1),T5 _,,(1)] =0,
respectively, we get f(T;;(1)) = f(T5;(1)) =0 and by, =0for 1 <k <3,4<1I<m-1
and 4 < k <1 < m — 1. By applying 5 on [T1;(1),T5 _,»(1)] = 0, we have f(T1;(1)) =0
for 4 < i < m — 1. By applying @5 on [T}, (1), T; —m(1)] = 0 for 2 < i < m — 1, we have
f(Tim(1)) = 0. By applying @5 on [T3(1), Tr—1,-m(1)] = 0 and [T13(1), Tin—1,-m(1)] = 0,
respectively, we have f(T53(1)) = f(T13(1)) = 0. By considering the action of 5 on [T5,,(1)—
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T3,m71(1)7 T2,7m(1)+T2,—(m—1)(1)] =0 and [Tlm(l)le,mfl(l)a T2,7m(1)+T2,—(m,—1)(1)] = 07
we have f(T1,,(1)) = 0. Let X5 = E®™ 4 f(T15(1))T5,,(1). Then we have

Int ™" X505 (T3;(1)) = T;;(1) (mod w(F)) for 1 <i < j < m.

Denote Intleg,apg, by g.
Step 6 There exist h € F, Xg = EC™ + W with W € w(F) and a,b,c € F such that
71 )\ 1Int 1X6S06(T1](1)) = le(l) (mod TL,Q) for 1 < 1< ] < m.

abc

Suppose that

os(Lrinn(1) =T+ Y. Telal) ), 1<i<m—1,

1<k<I<m

where agf’ll € F.Forl <t<m—landt=#i—1,i+1, by applying g on [T} ;4+1(1), Ty 441(1)] =
O,Wehaveag?1 4 =0fort+2<1<m, l;&zandak 41y =0for 1 <k <t—1,k#i By
considering the action of g on [T12(1), T13( )] =0, [Th3(1),T14(1)] = 0 and [T12,T14] = 0,

respectively, we have a( )

we have aé) = 0 and a4 .5 =0. For 3 <k < m —1, by considering the action of g

on [T5 x4+1(1), Ty k41(1)] = 0, we get ag )(k+1) = a,(c’?l (k) = 0. For 3 <k <m-—2, by
applying ¢¢ on [T) x+1(1), Tk—1 x4+2(1)] = 0, we obtain agk) (hi2) = al(fi)z k) = 0.

For j 7é i — 1,7+ 1, by considering the action of g on [T;,;11(1), T} ;+1(1)] = 0, we get

= 0 and a3 2, = 0. By applying ys on [T»3(1),T14(1)] = 0

aﬁjj.ﬂ z+lj Choose
k—1 i—1 2
ZTl- @D+ > Tals), h=d,
2<i<j<m

Then

At Xeps (T12(1)) = Tia(1) + 11, —a(al'),),

)\;_Lllnt_nggoﬁ(ng(l)) = T23(1) + T1 _2( 1), )+T2 3(@2 3) +T1 — (ag ),4)
A It Koo (T (1) = Thiva(1) +Th—2(af? ) + (i+1)<a§,)—(i+1))a 3<i<m-—1

Denote A;llnt_lX“pG by Y7

Now we may assume that

Pr(Ty (1)) =T () + Y Tro(by?), 1<i<m—2,i+2<j<m,
1<k<I<m
Whereb,(cijzl eF. Forl<t<m—-1,t#i—1,5, 2<s<m, 3<p<m, s,pFi, by applying
wron [Ty 441(1), T;;(1)] = 0, [Th5(1), T3;(1)] = 0 and [T2,(1), T;;(1)] = 0, respectively, we have

pr(Tia(1)) = Tis(1) + To (b)) + Tama(by)%s) + Toma(byr?y) + Toma(b52)),
pr(Ta(1)) = Tua(1) + 11 o(00%) + T a(bi2)) + To s (b "),

pr(T2a(1)) = Toa(1) + T1 oo (bh) + T1_s(b2y) + To,—s(b575) + To,—a(b572)),
or(Tu(1)) = Tu() +Th o) + Th (b)), k= 1,2,5 <1 < m,

pr(Tiy(1) = Tiy(1) +Tho(b57y) + Ty (057 + T (bﬁ”fj) 3<i<ji<m,j#i+1
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By applying @7 on [T12(1),T13(1)] = 0 and [T12(1),T14(1)] = 0, respectively, we have
b(134—b(143—0 For1<i<j<ml1<k<j<mk#i4<j<m, by applying ©7
on [T;;(1),Tk;(1)] = 0, we obtain that b(”) =0 and a( 9 Ly = 0. For 3 <i < j <m and
j # i+ 1, by applying @7 on [Th;(1) + Tb ;1 (1), T;;(1) — Tj—1;(1)] = 0, we get b, = 0.

By applying ¢7 on [T13(1), T23(1)] = 0, [T13(1), T24(1)] = 0 and [T33(1), T24(1)] = 0O
respectively, we get b§1§)3 = —ag?),g, bg%z = b24) nd bffg = af),4. Let a = bfi)?,,
b= bglﬂ, c= al . Then

pﬁwwnwmwznﬁmn+ﬂﬂmﬁabns¢Sm—L
pupepr(Tij (1)) = Ty (1) + Ty o (b57) for 1< i< j<m—1,j#i+1.

That is to say
p;}),caﬁ(Tij(l)) =T;;(1) (mod Th,_5) for 1 <i < j < m.

Denote p;})’cgw by s.
Step 7 There exist some d,s € F*, X; = E@®™ + T),,(s"'d) and a linear map f from
loy (F) to F such that &' Int X7ps = 1.

Now we assume that ps(T; _;(1)) = > Tk,_l(c,(vﬂ)l) For 2 < k <m, k # 1,7,
1<k<I<m

2<t<m-—1,t+1%#47j by applying ps on [T1(1), Ti,—;(1)] = 0, [T1,441(1), T35 (1)] =
and [T;;(1),T;,—;(1)] = 0, respectively, we get

ps(Th2(1)) = Ti a(cfl%y),
ws(T;—;(1)) = T;_4(c Z_J)—|—T _2( )for1<z<2 i <j<mand (i,5) # (1,2),
es(Th (1) = T () + T o) + T i(cf?)) for 3 <i < j <m.

For 3 <¢ < j <m —1, by applying ¢g on

(Ti-1,4(1) = Tj541(1), T5,—5 (1) + Ty, —(j+1)(1)] = 0,

we obtain cg = 0. For 3 <i < k <m — 1, by considering the action of pg on

[T2i(1) = Tor(1), T —m (1) + Tho,—m(1)] = 0
we get that c%”fz = c1 Dford<i<m-—1.
For 3<Il+#k <m, by applying yg on
[T2i(1) — Tor(1), Th, (1) + Th, (1) = 0
an _ (k)

we get ¢; o = ¢ .

For 2 <1 < k <1 <m, by applying ¢s on [T1,(1) — T1,(1),T; (1) + T; _;(1)] = 0, we

have c(lk)k = c ;- By applying ¢s on

[T15(1) + To3(1), T1,—5(1) + T2,-3(1)] = 0
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and
[Th2(1) = Tas(1), T, —a(1) + T3, -4(1)] = 0
we obtain 0513)3 = 0523)3 and 0224)4 = 05(334)4 By applying (s on

[Th2(1) + T1(1), To, -1 (1) + T, —;(1)] = 0

with 4 < k < 57 < m, we get c(%)k = ckkj) So all c j are equal for 1 < i < j < m except

(i,7) = (1,2). Let d = Cf)T:s)7 5= cgfi)j, X, = E®m) + Tim(s71d), then

€ It Xrps(Th—2(1)) = Ti_a(s7'cl'?y),
£ It X7 s (To, (1)) = To_m(s™Lel™™ — d),
gs_lIntX7908(Ti7*j(1)) = E,*j(l) + Tl,*Q(S_lcgi,j—g) for 1 <1 <j <m, (27.7) 7& (17 2)7 (27m)

It is easy to see that

EMt X708(Thi1(1)) = Tiana(1) + T17_2(371a§f)72) for 1 <i<m-—1,
£ It Xrps(T35(1) = Tig(1) +Th—a(s1017,) for 1 <i<j <m,j#i+1

Let f(Tii1(1) = s7'al’y, f(T1-2(1) = s7'¢{'2) — 1, f(Thom(1) = s~ — d,
FT(0) = 5769, G # i+ 1, F(To_i(1) = s~ ¢, k.1 # (1,2), (2,m). Then

& Int X705 = ny.

Above discussion shows that

© = e, Int X, (Mn)§§g¢c2Int(X2X3X4X5X6X7)Ahpa,b,cfsﬁf-

By Lemma 4.1, it is easy to show that ¢ is of form (5.4). This completes the proof.
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