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Abstract: In this article we mainly study Ricci solitons in trans-Sasakian manifold of type

(α, β). By the calculation of Ricci tensor, we obtain that 3-dimensional compact trans-Sasakian

manifold equipping with Ricci solitons (g, ξ, λ) is homothetic to a Sasakian manifold and a trans-

Sasadkian manifold admitting a gradient Ricci soliton is an Einstein manifold in case of α, β are

constants.
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1 Introduction

Let (M, φ, η, ξ) be a (2n + 1)-dimensional almost contact manifold. Then the product
M = M × R is a almost Hermitian manifold with almost complex structure J and product
metric G being Hermitian metric. In [10], Gray and Harvella gave sixteen different struc-
tures of the almost Hermitian manifold (M, J,G). Using the structure in the class W4 on
(M, J,G), the trans-Sasakian structure (φ, η, ξ, α, β) on M , was defined (see [15]) that is
the generalization of Sasakian and Kenmotsu structure on a contact metric manifold (see
[1, 12]), where α, β are smooth functions on M . In general, we denote (M, φ, η, ξ, α, β) by
a trans-Sasakian manifold of type (α, β). Note that trans-Sasakian manifolds of type (0, 0),
(α, 0) and (0, β) are called cosymplectic, α-Sasakian and β-Kenmotsu manifolds respectively.

Recall that a Ricci soliton is the generalization of Einstein metric and defined on a
Riemannian manifold (M, g) by

Ric +
1
2
LV g = λg, (1.1)

where V is a smooth vector field , λ a constant on M . It is called gradient Ricci soliton if
V = ∇f for some smooth function f on M . The Ricci soliton became important not only
for studying topology of manifold but in study of string theory. Compact Ricci solitons are
the fixed point of Ricci flow

∂

∂t
g = −2Ric
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projected from the space of metrics onto its quotient modulo diffeomorphisms and scalings,
and often arise as blow-up limits for Ricci flow on compact manifolds. The Ricci soliton
is said to be shrinking, steady and expanding according as λ is negative, zero and positive
respectively. More details about Ricci soliton can refer to [2, 4].

Recently in [3], Calin and Carasmareanu started to study Ricci solitons in f -Koenmotsu
manifolds. Later Nagaraja and Premalatha [13] also considered Ricci soliton (g, V, λ) in f -
Koenmotsu manifolds and Ricci soliton in 3-dimensional trans-Sasakian manifolds when V

is a conformal killing vector field, and gave the conditions for Ricci solitons to be shrinking,
steady and expanding. Otherwise, De [9] studied Ricci solitons on normal almost contact
metric manifolds.

Concerning the Ricci solitons in contact manifolds, Sharama [16] began to study the
Ricci solitons in K-contact manifolds, where the contact structure ξ is a killing vector field,
i.e., Lξg = 0, which is not in general in a trans-Sasakian manifold. Recently, He and Zhu [11]
proved that a Sasakian manifold satisfying the gradient Ricci soliton equation is necessarily
Einstein. Also, Cho [5, 6] considered contact Ricci solitons and transversal Ricci solitons in
3-contact manifolds, and proved that a compact contact Ricci soliton is Sasakian-Einstein
and a 3-contact manifold admitting a transversal Ricci soliton is either Sasakian or locally
isometric to one of the following Lie group with a left invariant metric: SU(2), SL(2,R),
E(2), respectively.

Motivated by the above work, in this paper, we study the Ricci soliton in a 3-dimensional
trans-Sasakian manifold (M, φ, η, ξ, α, β) of type (α, β) in case of V = ξ in Ricci soliton
equation (1.1) and the gradient Ricci solitons in trans-Sasakian manifolds.

2 Preliminaries

An almost contact manifold (M, φ, ξ, η) is a (2n + 1)-dimensional Riemannian manifold
M equipped with an almost contact structure (φ, ξ, η), where φ is a (1, 1)-tensor field, ξ a
unit vector field, η a one-form dual to ξ satisfying

φ2 = −I + η ⊗ ξ, η ◦ φ = 0, φ ◦ ξ = 0. (2.1)

It is well-known that there exists a Riemannian metric g such that

g(φX, φY ) = g(X, Y )− η(X)η(Y ), (2.2)

g(φX, Y ) = −g(X, φY ), g(X, ξ) = η(X), (2.3)

where X, Y ∈ X(M). If there are two smooth functions α, β on (M, φ, ξ, η) such that

(∇Xφ)Y = −α(g(X, Y )ξ − η(Y )X) + β(g(φX, Y )ξ − η(Y )φX), (2.4)

then M is called a trans-Sasakian manifold of type (α, β), denote by (M, φ, ξ, η, α, β), where
∇ is the Levi-Civita connection with respect to metric g. It is clear that a trans-Sasakian
manifold of type (1, 0) is a Sasakian manifold and a trans-Sasakian manifold of type (0, 1)
is a Kenmotsu manifold. A trans-Sasakian manifold of type (0, 0) is called cosymplectic
manifold.
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Using (2.4), it follows that for any X, Y ∈ X(M)

∇Xξ = −αφ(X) + β(X − η(X)ξ), (∇Xη)Y = −αg(φX, Y ) + βg(φX, φY ). (2.5)

Then it is easy to get the divergence divξ = tr(X → ∇Xξ) = 2nβ and ∇ξξ = 0.
Let Ric be the Ricci tensor on a Riemmaian manifold (M, g), then the Ricci operator

Q : X(M) → X(M) is defined by Ric(X, Y ) = g(QX, Y ), X, Y ∈ X(M). It is well known
that for any vector field X, Y ∈ X(M), the following results were hold [7, Theorem 3.2,
Proposition 3.4]:

R(X, Y )ξ = (α2 − β2)(η(Y )X − η(X)Y ) + 2αβ(η(Y )φ(X)− η(X)φ(Y ))

+(Y α)φX − (Xα)φY + (Y β)φ2X − (Xβ)φ2Y, (2.6)

2αβ + ξα = 0, (2.7)

Ric(X, ξ) = (2n(α2 − β2)− ξβ)η(X)− (2n− 1)Xβ − (φX)α. (2.8)

Lemma 2.1 For any Riemannain manifold (M, g) and a local orthogonal frame {ej}
on M , j = 1, · · · ,dimM , the gradient of scalar curvature r satisfies

1
2
∇r =

∑
j

(∇Q)(ej , ej),

where (∇Q)(X, Y ) = ∇XQ(Y )−Q(∇XY ), X, Y ∈ X(M).
Proof For any X ∈ X(M),

X(r) =
∑

j

∇XRic(ej , ej) =
∑

j

∇Xg(Qej , ej)

=
∑

j

{
g(∇X(Qej), ej) + g(Qej ,∇Xej)

}

=
∑

j

g((∇Q)(ej , X), ej) = 2
∑

j

g((∇Q)(ej , ej), X).

Note that the last equation is held because of the second Bianchi identity.

3 Ricci Solitons in 3-Dimensional Trans-Sasakian Mianifolds

In this section we consider Ricci soliton (g, ξ, λ) in 3-dimensional trans-Sasakian mani-
folds (M, φ, ξ, η, α, β), i.e., there exists some constant λ satisfies

Ric +
1
2
Lξg = λg. (3.1)

The next lemma play important role in proving our results.
Lemma 3.1 For any (2n + 1)-dimensional manifold with trans-Sasakian structure

(φ, ξ, η, α, β), we have
1
2
ξr = 2nβ2,

where r is the scalar curvature.
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Proof In term of (3.1) for any vector field X,

Q(X) = λX + βφ2X. (3.2)

We compute the differentiation of (3.2) with respect to any vector field Y ,

(∇Y Q)X = ∇Y (Q(X))−Q(∇Y X)

= ∇Y (λX + βφ2X)− λ∇Y X − βφ2(∇Y X)

= Y (β)φ2X − αβg(X, φY )ξ + β2g(φX, φY )ξ

−αβη(X)φ(Y )− β2η(X)φ2(Y ). (3.3)

Since there is a canonical splitting of tangent bundle ker η ⊕ spanξ as the case of a contact
structure, we can choose an orthogonal frame {e1, · · · , e2n+1} such that ej+n = φej , e2n+1 =
ξ, j = 1, · · · , n. It reduces from Lemma 2.1 and (3.3) that

1
2
ξr =

1
2
g(∇r, ξ) =

2n+1∑
j=1

g((∇Q)(ej , ej), ξ) =
2n+1∑
j=1

g((∇ej
Q)ej , ξ)

= β2

2n∑
j=1

g(φej , φej) = 2nβ2.

For the 3-dimensional trans-Sasakian manifolds, the Ricci tensor Ric may express as
follows (see [7]):

Ric(X, Y ) = (
1
2
r + ξβ − (α2 − β2))g(X, Y )

−(
1
2
r + ξβ − 3(α2 − β2))η(X)η(Y )

−(Y β + φ(Y )α)η(X)− (Xβ + φ(X)α)η(Y ), (3.4)

where r is the scalar curvature.
Thus

Ric(φX, φY ) = (
1
2
r + ξβ − (α2 − β2))g(φX, φY ), (3.5)

Ric(ξ, ξ) = 2(α2 − β2)− 2ξβ. (3.6)

By the first equation of (2.5), a straightforward calculation implies that

(Lξg)(X, Y ) = g(∇Xξ, Y ) + g(X,∇Y ξ) = 2βg(φX, φY ).

Therefore
(Lξg)(φX, φY ) = 2βg(φ2X, φ2Y ) = 2βg(φX, φY ). (3.7)

Applying (3.7), (3.5) in Ricci soliton equation (3.1), we have

1
2
r + ξβ − (α2 − β2) + β = λ. (3.8)
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Obviously, since φξ = 0,
(Lξg)(ξ, ξ) = 0. (3.9)

On the other hand, it implies from equations(3.6), (3.9) and Ricci soliton equation (3.1)
that

−2ξβ + 2(α2 − β2) = λ. (3.10)

Then from (3.8) and (3.10) we obtain

r + 2β = 3λ. (3.11)

Differentiating (3.11) w.r.t. ξ and together with Lemma 3.1 when n = 1, we get

ξβ = −2β2. (3.12)

It implies immediately from (3.12) and (3.11) that λ = 2(α2+β2), then we have the following
result.

Proposition 3.2 A Ricci soliton (g, λ, ξ) in a 3-dimensional trans-Sasakian manifold
is shrinking.

Moreover, we get from equation (3.12) the following.
Theorem 3.3 If (M, φ, ξ, η, α, β) is a 3-dimensional compact and connected trans-

Sasakian manifold admitting Ricci soliton (g, λ, ξ), then M is homothetic to a Sasakian
manifold .

Proof Using (3.12) and divξ = 2β, we get β = 0 and α is a non-zero constant. It
deduces that for any X, Y ∈ X(M),

α−2(∇X∇Y ξ −∇∇XY ξ) = g(Y, ξ)X − g(X, Y )ξ,

and (Lξg)(X, Y ) = 0, i.e., ξ is a killing vector field. Thus it completes the proof of theorem
by [14, Theorem 1.1]. The detail of proof can be seen in [8, Theorem 3.1].

Corollary 3.4 A 3-dimensional compact and connected trans-Sasakian manifold M

of type(α, β) admitting Ricci soliton (g, λ, ξ) is an Einstein manifold.
Proof From the proof of Theorem 3.3, we know β = 0. Thus the scalar curvature

r = 3λ is constant via (3.11). Moreover, Sharama [16] proved that a compact Ricci soliton
of constant scalar curvature is Einstein, then we obtain immediately the result.

4 Gradient Ricci Solitons in Trans-Sasakian Manifolds

In this section we consider gradient Ricci solitons in trans-Sasakian manifolds. We
assume that (M, φ, ξ, α, β) is a (2n + 1)-dimensional trans-Sasakian manifold.

First, we note that the following conclusion has been proved by taking Lie derivative of
LV g with respect to ξ.

Lemma 4.1 [11] For any manifold with a almost contact metric structure (φ, ξ, η, g),

Lξ(LV g)(Y, ξ) = R(V, ξ, ξ, Y ) + g(∇ξ∇ξV, Y ) +∇Y g(∇ξV, ξ)

for any vector field Y .
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Using (2.7), equation (2.6) implies

R(X, ξ, ξ, Y ) = g(R(X, ξ)ξ, Y ) = g

(
(α2 − β2)(X − η(X)ξ) + (ξβ)φ2X, Y

)

= −(α2 − β2 − ξβ)g(φX, φY ). (4.1)

When α, β =constant, it implies immediately from (2.8) that

Ric(X, ξ) = 2n(α2 − β2)η(X).

Then

(LξRic)(Y, ξ) = ∇ξ(Ric(ξ, Y ))− Ric([ξ, Y ], ξ)

= ∇ξ(2n(α2 − β2)η(Y )))− Ric(∇ξY −∇Y ξ, ξ)

= 2n(α2 − β2)g(∇ξY, ξ)− Ric(∇ξY, ξ)

= 2n(α2 − β2)η(∇ξY )− Ric(∇ξY, ξ) = 0, (4.2)

and

(Lξg)(Y, ξ) = g(∇Y ξ, ξ) = 0,

R(V, ξ, ξ, Y ) = −(α2 − β2)g(φV, φY ) = −(α2 − β2)g(V, Y ).

On the other hand,

2(λ− 2n(α2 − β2))g(X, ξ) = 2(λg(X, ξ)− Ric(X, ξ)) = (LV g)(X, ξ)

= g(∇XV, ξ) + g(∇ξV, X).

Replacing X by ξ in above equation, we get

λ− 2n(α2 − β2) = g(∇ξV, ξ).

This implies ∇Y g(∇ξV, ξ) = 0 since α, β, λ are constant. Therefore, from Lemma 4.1, taking
the Lie derivative Lξ to the Ricci soliton equation (1.1) yields

−(α2 − β2)g(V, Y ) + g(∇ξ∇ξV, Y ) = 0. (4.3)

In case of where V = ∇f for some smooth function f , since for any X ∈ X(M) Ricci soliton
equation (1.1) yields ∇X∇f + QX = λX,

∇ξ∇ξ∇f = ∇ξ(λξ −Qξ) = −∇ξ(2n(α2 − β2)ξ) = 0.

Using (4.3), therefore we have

(α2 + β2)g(V, Y ) = 0. (4.4)

Next we consider the following cases:
(i) If α = 0 then β 6= 0 since α2 6= β2. So we have g(V, Y ) = 0 via (4.4), i.e., ∇f = 0

for any Y⊥ξ. It follows that f =constant.
(ii) If α 6= 0 then g(V, Y ) = 0 by (4.4), i.e., f =constant.
Summarizing the above discussion, we obtain the following conclusions:
Theorem 4.2 Any trans-Sasakian manifold (M, φ, ξ, η, α, β) admitting a gradient Ricci

soliton is an Einstein manifold provided α and β are constants.
Remark 4.3 In fact, our result can be regarded as the generalization of [11, Theorem 1.1].
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关于带有Ricci 孤子的trans-Sasakian 流形的注记

陈小民, 武国宁

(中国石油大学(北京)理学院数学系,北京 102249)

摘要: 本文主要研究带有Ricci 孤子的(α, β)型trans-Sasakian流形, 证明了带有Ricci 孤子(g, ξ, λ)

的3-维紧致trans-Sasakian流形是一个Sasakian流形. 此外, 如果α, β 是常数, 得到带有梯度Ricci 孤子

的trans-Sasakian流形是Einstein流形.
关键词: Ricci 孤子; 梯度Ricci 孤子; trans-Sasakian 流形; Sasakian 流形; Einstein 流形
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