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Abstract: In this paper, we investigate the value distribution of ¢-shift difference polynomials
of meromorphic function with zero order. By using the Nevanlinna theory, we obtain the following
result. Let f be a transcendental meromorphic function with zero order, m be a non-negative
integer, g, a,c € C\ {0},b € C, a(z) be a small function of f(2). If f(¢gz+¢)— f(z) Z0, n > 5, then
both f(2)"(f(2)™ —a)[f(qgz + ¢) — f(2)] — a(z) and f(2)" + a[f(gz + ¢) — f(2)] — b have infinitely
many zeros, which improve the conditions n > 7 of Theorem D and n > 8 of Theorem E.
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1 Introduction and Main Results

In this paper, o(f) is the order of f , A(f) is the convergence exponent of zeros of f.

In recent years, many papers [1, 2, 5, 6, 11, 13] focus on the difference of the complex
domain and get some difference analogues of the value distribution theory of meromorphic
function. The difference analogues of f’(z) are shift-difference A.f(z) = f(z +¢) — f(2)
and g-difference A,f(z) = f(gz) — f(z) or A,f(2) = f(gz + ¢) — f(2), where A.f(z) # 0,
A,f(z) # 0. The g-shift difference has been studied by some scholars. In 2006, Halburd,
Korhonen [12], Barnett and Morgan [5] obtained the difference analogues of the second main
theorem of Nevanlinna theory, the lemma on the logarithmic derivative, Picard’s theorem and
Clunie and Mokhon’ko lemmas. Later, some researchers investigate the value distribution
of difference polynomials. It is important for further study of the difference equation.

In 1959, Hayman [14] proved two famous results.

Theorem A If f is a transcendental meromorphic function, n(> 3) is a positive integer,
then f(2)"f'(z) takes every finite non-zero complex value infinitely often.

Theorem B If f is a transcendental meromorphic function, n(> 5) is a positive integer,
and a(# 0) is a constant, then f’(z) — af(z)" takes every finite complex value b infinitely

often.

* Received date: 2013-06-19 Accepted date: 2013-09-04
Foundation item: Supported by National Natural Science Foundation of China(11371139).
Biography: Wang Qiongyan(1989-), female, born at Pingdingshan, Henan, major in complex
analysis.



470 Journal of Mathematics Vol. 34

Theorem A also holds when n = 1,2. The case n = 2 was settled by Mues [18].
Bergweiler and Eremenko [19] proved the case of n = 1. However, only in the case of n =4
and b = 0 can the result of Theorem B be improved (see Mues [18]).

Zhang and Korhonen [2, Theorem 4.1] proved the following result.

Theorem C Let f be a transcendental meromorphic (resp. entire) function of zero
order and q be a non-zero complex constant. Then for n > 6 (resp. n > 2), f(2)"f(qz)
assumes every non-zero value a € C infinitely often.

Liu and Cao [1,Theorem 1.3] proved the following result.

Theorem D Let f be a transcendental meromorphic (resp. entire) function with zero
order, m,n be positive integers, a, ¢ be non-zero complex constants. If n > 7 (resp. n > 3),
then f(2)"(f(2)™ — a)[f(qz + ¢) — f(2)] — a(z) has infinitely many zeros, where «(z) is a
nonzero small function with respect to f.

Liu and Qi [6] proved the following result.

Theorem E Let f be a zero-order transcendental meromorphic function and a, q be
nonzero complex constants. Then, for n > 8, f(2)" + a[f(qz + ¢) — f(2)] assumes every
nonzero value b € C infinitely often.

In this paper, we first improve the conditions of Theorems D and E in the following
Theorems 1.1 and 1.2.

Theorem 1.1 Let f be a transcendental meromorphic function with zero order, m be
a non-negative integer, n be a positive integer, a,q € C\ {0}. If n > 5, then f(2)"(f(2)™ —
a)[f(gz+ c) — f(2)] — a(z) has infinitely many zeros, where a(z) is a nonzero small function
with respect to f.

Theorem 1.2 Let f be a zero-order transcendental meromorphic function and a, ¢ be
nonzero complex constants. Then, for n > 5, f(2)" +a[f(qz + ¢) — f(z)] assumes every value
b € C infinitely often.

Then we consider the value distribution of H,(z) = f(2)"[f(¢z) — f(#)] in Theorems
1.3 — 1.6, where f is a transcendental entire function with finite order.

Theorem 1.3 Let f be a transcendental entire function with finite order, n be a
positive integer, ¢ € C\ {0,1}, A,f(2) = f(gz) — f(z) # 0. If o(f), the order of f(z),
satisfies ¢7f) # 1, then H,, (2) = f(2)"A,f(2) has infinitely many zeros.

Example 1.3.1 Let f(z) = ze* ,q = —1, then H,(z) = f(2)"A,f(z) = —2z"Her+1)="
has only one zero, so the condition ¢”/) # 1 in Theorem 3 is necessary.

Theorem 1.4 Let f be a transcendental entire function with finite order, d(# 0)
is a Borel exceptional value of f, ¢ € C\ {0,1}, A,f(z) = f(gz) — f(z2) # 0 . Then
H(z) = f(2)[f(qz) — f(2)] assumes every value a € C infinitely often, and \(H —a) = o(f),
where \(H — a) is the convergence exponent of zeros of H(z) — a.

Theorem 1.5 Let f be a transcendental entire function with finite order, ¢ € C\{0,1},
A, f(z) = f(gz)— f(z) # 0. If f has infinitely many multiple zeros, then H(z) = f(z)[f(qz)—
f(2)] assumes every value a € C infinitely often.

Theorem 1.6 Let f be a transcendental entire function with finite order, ¢ € C\{0,1},
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A,f(z) = f(gz) — f(z) # 0. If there exists an infinite sequence {z,} satisfying f(z,) =

flgz,) =0, then H(z) = f(2)[f(gz) — f(2)] assumes every value a € C infinitely often.

2 Some Lemmas

In the following lemmas, the logarithmic density of set E is defined by

1 1
lim sup —dt.
r—oo 1087 Ji1 np t

Similarly, the lower logarithmic density of set F is defined by

1 1
lim inf / —dt.
r—00 IOgT [I,T]ﬂE t

For the proof of Theorem 1.1, we require the following Lemma 2.1 [6, Theorem 2.1] and
Lemma 2.2 [10, Lemma 3.4].
Lemma 2.1 Let f(z) be a meromorphic function of zero order, and let ¢ € C. Then

flqz +¢)

o) = o)

m(r,
on a set of logarithmic density 1.
Lemma 2.2 If f(z) is a non-constant zero order meromorphic function and ¢ € C\ {0},

then
T'(r, f(gz +¢)) = (1 +0(1))T(r, f(2)) + O(log )

on a set of lower logarithmic density 1.
For the proof of Theorem 1.2, we require the following Lemma 2.3 [10, Lemma 3.6].
Lemma 2.3 If f(z) is a non-constant zero order meromorphic function and ¢ € C\ {0},
then
N(r, f(gz+¢c)) = (1 +0(1))N(r, f(2)) + O(log )

on a set of lower logarithmic density 1.

For the proof of Theorem 1.3 and Theorem 1.4, we require the following Lemma 2.4 [8,
p.75-76] and Lemma 2.5 [8, Theorem 1.36].

Lemma 2.4 Suppose that fi(2), f2(2), -+, fu(2)(n > 2) are meromorphic functions

and ¢1(2),92(2), -+ ,gn(z) are entire functions satisfying the following conditions
(1) 2 fi(z)en® =0;
j=1

(ii) g;(2) — gr(z) are not constants for 1 < j < k < n;
(iii) Forl<j<m1<h<k<n,

T(r, f;) = o{T(r, e ") }(r — oo, r & E),

then f;(2) =0(j =1,2,--- ,n).
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Lemma 2.5 If f(z) is a meromorphic function in the complex plane, and a;(z), a2(2), a3(z)

are three distinct small functions of f(z). Then

Z &) 5D

3 Proofs of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1 We set

and A, f(z) = f(gz + ¢) — f(z), then

(n+m)m(r, f) < m(r, f*(f" —a)) +5(r, f)

= mlr 5 7)+ S

< mlrF) 4 mlr 5) + S0 1)

= m(r,F)+T(r,Af) — (,Alf)—i—S(r 1), (3.1)
(e mNf) = N (" =) = N5 5)

< N F)+ N, Alf) No(r) = Ma(1), (3.2)

where Ny(r) is the counting function of zeros of both F(2) and A, f(2),N1(r) is the counting
function of poles of both F(z) and A, f(z). (3.1) and (3.2) yield

(n+ m)T(Ta f) < T(Ta F) + T(T, Aqf) - NO(T) - Nl(r) + S(Tv f) (3'3)

By Lemma 2.5, we have

- 1

1)+N(T’F—a(2)

T(r,F)< N(r,F)+ N(r, 2

)+ S(r, F). (3.4)
From F(z) = f(2)"(f(2)™ — a)A,f(2) and Ny(r) is the counting function of zeros of
both F(z) and A, f(2), we have

N(r, ,})—i—N(r,ﬁnl_a)-l-No(r) 35)

< (m+1)T(r, f) + No(r) + O(1).

%)SN(T

From F(z) = f(2)"(f(2)™ — a)A,f(z) and Ny(r) is the counting function of poles of
both F(z) and A, f(2), we have

N(r,F) < N(r,f) + Ni(r) < T(r, f) + Ny (). (3.6)
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Substituting (3.5) and (3.6) into (3.4), we have

T(r.F) < N F) + N, ) + N ) + 501 F) -
< (m+2)T(r, f) + No(r) + N1(r) + N(r, F_la(Z)> +5(r, ).
By Lemma 2.2, we have
T(r,Agf) <T(r, f) +T(r, flgz +¢)) <20(r, f) + S(r, f). (3-8)
Substituting (3.7) and (3.8) into (3.3), we have
(n+m)T(r, f) <T(r, F) 4+ T(r, Ay f) = No(r) = Ni(r) + S(r, f) 59)

< (m+4)T(r, f) + N(r, F_la(z)

)+5(r, )
on a set of lower logarithmic density 1.

(3.9) implies that F'(z) — a(z) has infinitely many zeros when n > 5. Thus the proof of
Theorem 1.1 is complete.

Proof of Theorem 1.2 Denote A, f(z) = f(gz+¢) — f(z) and ¢ =

We consider two cases

Casel b—aA,f=0. If ¢ # 1, then A,f = 0 at the point 2z = -1, contradicting
A= % If ¢ = 1, then any 2, cannot be the pole of f(z). Otherwise all points zy + kc(k =
0,+1,+2,---) are the poles of f(z), which implies that the order of f(z) is at least one, also
contradicting the assumption of the Theorem 1.2. If f(z) is a transcendental entire function
with order zero, then f(z) has infinitely many zeros. Hence f(2)" + a[f(qz + ¢) — f(2)]
assumes value b infinitely often.

Case2 b—aA,f #0. Then

b—alAgf
o

nm(r, f) = m(r, f*) = m(r, Z”;Aqf) < m(r, 30) +m(r,b—al,f), (3.10)
nN(r, f) = N(r, f*) = N(r, b- ZAqf) < N(r, ;) + N(r,b—alA,f) — No(r) — Ny(7),

(3.11)

where Ny(r) is the counting function of zeros of both ¢ and b —aA,f, Ny(r) is the counting
function of poles of both ¢ and b — aA,f.
By (3.10) and (3.11), we have
nT(r, f) < T(r, 1) + T(r,b — aly f) — Ro(r) — Nu(r) + O(1)
@ (3.12)
< T(r, @)+ T(r,b—alyf) — No(r) — Ni(r).

From ¢ = bi‘;f“f, we know that the poles of ¢ are generated by the zeros of f and the

poles of both ¢ and b — aA, f, thus

N(r,¢) < N(r, ch) + Ny (7). (3.13)
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From ¢ = bi’;f‘lf, we know that the zeros of ¢ are generated by the poles of f and the
zeros of both ¢ and b — aA, f, thus
1 _ _
N(r, 2) < N(r, f) + No(r). (3.14)

Applying the Nevanlinna second main theorem, thus from (3.13) and (3.14), we get

T(r,0) < N(r. ) + N(r, =) + N(r, ——) + 5(r, /)
. - : (3.15)
SN&7J+N@J%HWﬂ@_Q+NMM+NNH+Smf)
By Lemma 2.2, we have
T(r,b—al,f) <2T(r, f)+ S(r, f). (3.16)
Substituting (3.15) and (3.16) into (3.12), we have
WI(r, f) < 2T(r, ) + N(r, f) + N(r, ) + N, ——) + S(r, f)
. / vl (3.17)
<AT(r,f)+ N(r, )+ S(r, f).
p—1
That is
(0= 4)T(r. ) < N L) S f) = N, ! )+ S(r, f)

f(2)" +alf(qgz+c) = f(2)] = b

on a set of lower logarithmic density 1.
The above inequality shows that f(z)" +a[f(gz+c)— f(z)] — b has infinitely many zeros
when n > 5. Thus the proof of Theorem 1.2 is completed.

4 Proofs of Theorem 1.3—Theorem 1.6

Proof of Theorem 1.3 Suppose that f(z) has infinitely many zeros, then H(z) =
f(2)A, f(2) has infinitely many zeros. If f(z) has only finitely many zeros, then we can set

f(2) = P(2)e"®),
where P(2)(# 0), h(z) are polynomials and o(f) = degh(z)(> 1), thus
A, f(2) = P(qz)e"4®) — P(2)e"®) = ") [P(gz)eM 7)== — P(2)].

By the condition ¢°(f) # 1, we obtain that h(gz) — h(z) # constant. Thus using Lemma
2.5, we get that P(gz)e™9%)~h(2) — P(2) has infinitely many zeros, that is, H(z) = f(2)A,f(2)
has infinitely many zeros.

Thus Theorem 1.3 is proved.
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Proof of Theorem 1.4 Suppose d(# 0) is a Borel exceptional value of f(z), we can

set
k

f(z2) =d+p(z)e*,
where k is a positive integer, a( 0) is a complex constant and p(z)(# 0) is an entire function
satisfying

o(p) <o(f) =k,
thus
f(qZ) =d + p(qz)eaqkzk —d + p(qz)ea(qkfl)z’“ eazk —d + p(qz)pl(z)eazk’

where p;(z) = ex(@" ~D="

So

,p1(2)(# 0) is an entire function satisfying o(p;(z)) = k or 0.

H(2) = p(2)[p(g2)p1 (2) — p(2)]e***" + d[p(gz)pi (2) — p(2)]e*". (4.1)
Since f(qz) — f(z) £ 0, this gives
p(gz)p1(2) — p(2) £ 0. (4.2)
On combining (4.1) with (4.2), we deduce
o(H) =o(f) =k (4.3)
If d*(€ C) is a Borel exceptional value of H(z), then we can set
H(z) = d* + p*(2)e’, (4.4)
where 3(# 0) is a complex constant, p*(2)( 0) is an entire function satisfying
o(p"(2)) < o(H(2)) = k,
(4.1) and (4.4) give that

p(2)[p(az)p1(2) — p(2)]e2*" + d[p(gz)pi(2) — p(2)]e®*" —p*(2)e? —d* =0.  (4.5)

If B # 2a or 3 # «, combining Lemma 2.4 with (4.5), we get

p(qz)p1(2) —p(2) =0,

this contradicts with (4.2).

Thus, any finite value a is not the Borel exceptional value of H(z). Hence H(z) assumes
every value a € C infinitely often.

It follows from (4.3) that A(H —a) = o(H) = o(f). Thus Theorem 1.3 is proved.

Proofs of Theorem 1.5 and Theorem 1.6 In the following, we only give the proof
of Theorem 1.5. Theorem 1.6 can be proved similarly, we omit its proof.

Obviously, if @ = 0, noting that A,f(z) is an entire function and f(z) has infinitely
many zeros, we get that H(z) has infinitely many zeros.
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Now assume that a # 0 and H(z) — a has only finitely many zeros, then we can set

H(z) —a= f(2)f(az) = f(2)* = a = p(z)e"?, (4.6)

where p(z), h(z) are polynomials. It follows from the condition of Theorem 1.5 that H(z)
is a transcendental entire function, hence p(z) # 0 and deg h(z) > 1. Taking derivatives in

both sides of (4.6) and eliminating e"*), we get

[f(2)f(g2)]  2f)) _ P () +p@R(2) B
1) O R [ B C) R (7= R OV (O L

From p(z),h(z) are polynomials satisfying p(z) # 0 and degh(z) > 1, we get p/(z) +

f(z) a

p(z)h'(z) # 0. Since f(z) has infinitely many multiple zeros, so there exists a sufficiently
large point zg, where zj is the zero of f(z) with multiplicity k& > 2, p’(29) + p(20)h/(20) # 0
and p(zp) # 0. Next we discuss the following two cases.

Case 1 If z; is the zero of f(gz) with multiplicity k, > 1, then z is the simple pole of

% and the pole of — 2 (Z))] with multiplicity k, — k + 1. However, 2, is the pole of
ff((qzz with multiplicity k, — k£ and the pole of f(q ) with multiplicity k, 4+ k. This shows

that (4.7) is a contradiction.

Case 2 If f(qzo) # 0, then z is the simple pole of % and the zero of — fo(E;))] .
f (2)

D) with multiplicity £ > 2. This shows
that (4.7) is also a contradiction.

However, zg is the zero of

and the pole of Z)f(qz)
Then H(z) assumes every value a € C infinitely often.

Thus the proof of Theorem 1.5 is completed.
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