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Abstract: In this paper, we investigate the value distribution of q-shift difference polynomials

of meromorphic function with zero order. By using the Nevanlinna theory, we obtain the following

result. Let f be a transcendental meromorphic function with zero order, m be a non-negative

integer, q, a, c ∈ C\{0}, b ∈ C, α(z) be a small function of f(z). If f(qz +c)−f(z) 6≡ 0, n ≥ 5, then

both f(z)n(f(z)m − a)[f(qz + c)− f(z)]− α(z) and f(z)n + a[f(qz + c)− f(z)]− b have infinitely

many zeros, which improve the conditions n ≥ 7 of Theorem D and n ≥ 8 of Theorem E.
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1 Introduction and Main Results

In this paper, σ(f) is the order of f , λ(f) is the convergence exponent of zeros of f .
In recent years, many papers [1, 2, 5, 6, 11, 13] focus on the difference of the complex

domain and get some difference analogues of the value distribution theory of meromorphic
function. The difference analogues of f ′(z) are shift-difference ∆cf(z) = f(z + c) − f(z)
and q-difference ∆qf(z) = f(qz) − f(z) or ∆qf(z) = f(qz + c) − f(z), where ∆cf(z) 6≡ 0,
∆qf(z) 6≡ 0. The q-shift difference has been studied by some scholars. In 2006, Halburd,
Korhonen [12], Barnett and Morgan [5] obtained the difference analogues of the second main
theorem of Nevanlinna theory, the lemma on the logarithmic derivative, Picard’s theorem and
Clunie and Mokhon’ko lemmas. Later, some researchers investigate the value distribution
of difference polynomials. It is important for further study of the difference equation.

In 1959, Hayman [14] proved two famous results.
Theorem A If f is a transcendental meromorphic function, n(≥ 3) is a positive integer,

then f(z)nf ′(z) takes every finite non-zero complex value infinitely often.
Theorem B If f is a transcendental meromorphic function, n(≥ 5) is a positive integer,

and a(6= 0) is a constant, then f ′(z) − af(z)n takes every finite complex value b infinitely
often.
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Theorem A also holds when n = 1, 2. The case n = 2 was settled by Mues [18].
Bergweiler and Eremenko [19] proved the case of n = 1. However, only in the case of n = 4
and b = 0 can the result of Theorem B be improved (see Mues [18]).

Zhang and Korhonen [2, Theorem 4.1] proved the following result.
Theorem C Let f be a transcendental meromorphic (resp. entire) function of zero

order and q be a non-zero complex constant. Then for n ≥ 6 (resp. n ≥ 2), f(z)nf(qz)
assumes every non-zero value a ∈ C infinitely often.

Liu and Cao [1,Theorem 1.3] proved the following result.
Theorem D Let f be a transcendental meromorphic (resp. entire) function with zero

order, m,n be positive integers, a, q be non-zero complex constants. If n ≥ 7 (resp. n ≥ 3),
then f(z)n(f(z)m − a)[f(qz + c) − f(z)] − α(z) has infinitely many zeros, where α(z) is a
nonzero small function with respect to f .

Liu and Qi [6] proved the following result.
Theorem E Let f be a zero-order transcendental meromorphic function and a, q be

nonzero complex constants. Then, for n ≥ 8, f(z)n + a[f(qz + c) − f(z)] assumes every
nonzero value b ∈ C infinitely often.

In this paper, we first improve the conditions of Theorems D and E in the following
Theorems 1.1 and 1.2.

Theorem 1.1 Let f be a transcendental meromorphic function with zero order, m be
a non-negative integer, n be a positive integer, a, q ∈ C \ {0}. If n ≥ 5, then f(z)n(f(z)m −
a)[f(qz + c)− f(z)]−α(z) has infinitely many zeros, where α(z) is a nonzero small function
with respect to f .

Theorem 1.2 Let f be a zero-order transcendental meromorphic function and a, q be
nonzero complex constants. Then, for n ≥ 5, f(z)n +a[f(qz + c)− f(z)] assumes every value
b ∈ C infinitely often.

Then we consider the value distribution of Hn(z) = f(z)n[f(qz) − f(z)] in Theorems
1.3− 1.6, where f is a transcendental entire function with finite order.

Theorem 1.3 Let f be a transcendental entire function with finite order, n be a
positive integer, q ∈ C \ {0, 1}, ∆qf(z) = f(qz) − f(z) 6≡ 0. If σ(f), the order of f(z),
satisfies qσ(f) 6= 1, then Hn(z) = f(z)n∆qf(z) has infinitely many zeros.

Example 1.3.1 Let f(z) = zez2
, q = −1, then Hn(z) = f(z)n∆qf(z) = −2zn+1e(n+1)z2

has only one zero, so the condition qσ(f) 6= 1 in Theorem 3 is necessary.
Theorem 1.4 Let f be a transcendental entire function with finite order, d(6= 0)

is a Borel exceptional value of f , q ∈ C \ {0, 1}, ∆qf(z) = f(qz) − f(z) 6≡ 0 . Then
H(z) = f(z)[f(qz)− f(z)] assumes every value a ∈ C infinitely often, and λ(H − a) = σ(f),
where λ(H − a) is the convergence exponent of zeros of H(z)− a.

Theorem 1.5 Let f be a transcendental entire function with finite order, q ∈ C\{0, 1},
∆qf(z) = f(qz)−f(z) 6≡ 0. If f has infinitely many multiple zeros, then H(z) = f(z)[f(qz)−
f(z)] assumes every value a ∈ C infinitely often.

Theorem 1.6 Let f be a transcendental entire function with finite order, q ∈ C\{0, 1},
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∆qf(z) = f(qz) − f(z) 6≡ 0. If there exists an infinite sequence {zn} satisfying f(zn) =
f(qzn) = 0, then H(z) = f(z)[f(qz)− f(z)] assumes every value a ∈ C infinitely often.

2 Some Lemmas

In the following lemmas, the logarithmic density of set E is defined by

lim sup
r→∞

1
log r

∫

[1,r]∩E

1
t
dt.

Similarly, the lower logarithmic density of set E is defined by

lim inf
r→∞

1
log r

∫

[1,r]∩E

1
t
dt.

For the proof of Theorem 1.1, we require the following Lemma 2.1 [6, Theorem 2.1] and
Lemma 2.2 [10, Lemma 3.4].

Lemma 2.1 Let f(z) be a meromorphic function of zero order, and let c ∈ C. Then

m(r,
f(qz + c)

f(z)
) = o(T (r, f))

on a set of logarithmic density 1.
Lemma 2.2 If f(z) is a non-constant zero order meromorphic function and q ∈ C\{0},

then
T (r, f(qz + c)) = (1 + o(1))T (r, f(z)) + O(log r)

on a set of lower logarithmic density 1.
For the proof of Theorem 1.2, we require the following Lemma 2.3 [10, Lemma 3.6].
Lemma 2.3 If f(z) is a non-constant zero order meromorphic function and q ∈ C\{0},

then
N(r, f(qz + c)) = (1 + o(1))N(r, f(z)) + O(log r)

on a set of lower logarithmic density 1.
For the proof of Theorem 1.3 and Theorem 1.4, we require the following Lemma 2.4 [8,

p.75–76] and Lemma 2.5 [8, Theorem 1.36].
Lemma 2.4 Suppose that f1(z), f2(z), · · · , fn(z)(n ≥ 2) are meromorphic functions

and g1(z), g2(z), · · · , gn(z) are entire functions satisfying the following conditions

(i)
n∑

j=1

fj(z)egj(z) ≡ 0;

(ii) gj(z)− gk(z) are not constants for 1 ≤ j < k ≤ n;
(iii) For 1 ≤ j ≤ n, 1 ≤ h < k ≤ n,

T (r, fj) = o{T (r, egh−gk)}(r →∞, r 6∈ E),

then fj(z) ≡ 0(j = 1, 2, · · · , n).
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Lemma 2.5 If f(z) is a meromorphic function in the complex plane, and a1(z), a2(z), a3(z)
are three distinct small functions of f(z). Then

T (r, f) ≤
3∑

j=1

N̄(r,
1

f − aj(z)
) + S(r, f).

3 Proofs of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1 We set

F (z) = f(z)n(f(z)m − a)[f(qz + c)− f(z)]

and ∆qf(z) = f(qz + c)− f(z), then

(n + m)m(r, f) ≤ m(r, fn(fm − a)) + S(r, f)

= m(r,
F

∆qf
) + S(r, f)

≤ m(r, F ) + m(r,
1

∆qf
) + S(r, f)

= m(r, F ) + T (r,∆qf)−N(r,
1

∆qf
) + S(r, f), (3.1)

(n + m)N(r, f) = N(r, fn(fm − a)) = N(r,
F

∆qf
)

≤ N(r, F ) + N(r,
1

∆qf
)− N̄0(r)− N̄1(r), (3.2)

where N̄0(r) is the counting function of zeros of both F (z) and ∆qf(z),N̄1(r) is the counting
function of poles of both F (z) and ∆qf(z). (3.1) and (3.2) yield

(n + m)T (r, f) ≤ T (r, F ) + T (r,∆qf)− N̄0(r)− N̄1(r) + S(r, f). (3.3)

By Lemma 2.5, we have

T (r, F ) ≤ N̄(r, F ) + N̄(r,
1
F

) + N̄(r,
1

F − α(z)
) + S(r, F ). (3.4)

From F (z) = f(z)n(f(z)m − a)∆qf(z) and N̄0(r) is the counting function of zeros of
both F (z) and ∆qf(z), we have

N̄(r,
1
F

) ≤ N̄(r,
1
f

) + N̄(r,
1

fm − a
) + N̄0(r)

≤ (m + 1)T (r, f) + N̄0(r) + O(1).
(3.5)

From F (z) = f(z)n(f(z)m − a)∆qf(z) and N̄1(r) is the counting function of poles of
both F (z) and ∆qf(z), we have

N̄(r, F ) ≤ N̄(r, f) + N̄1(r) ≤ T (r, f) + N̄1(r). (3.6)
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Substituting (3.5) and (3.6) into (3.4), we have

T (r, F ) ≤ N̄(r, F ) + N̄(r,
1
F

) + N̄(r,
1

F − α(z)
) + S(r, F )

≤ (m + 2)T (r, f) + N̄0(r) + N̄1(r) + N̄(r,
1

F − α(z)
) + S(r, f).

(3.7)

By Lemma 2.2, we have

T (r,∆qf) ≤ T (r, f) + T (r, f(qz + c)) ≤ 2T (r, f) + S(r, f). (3.8)

Substituting (3.7) and (3.8) into (3.3), we have

(n + m)T (r, f) ≤ T (r, F ) + T (r,∆qf)− N̄0(r)− N̄1(r) + S(r, f)

≤ (m + 4)T (r, f) + N̄(r,
1

F − α(z)
) + S(r, f)

(3.9)

on a set of lower logarithmic density 1.
(3.9) implies that F (z)− α(z) has infinitely many zeros when n ≥ 5. Thus the proof of

Theorem 1.1 is complete.
Proof of Theorem 1.2 Denote ∆qf(z) = f(qz + c)− f(z) and ϕ = b−a∆qf

fn .
We consider two cases
Case 1 b− a∆qf ≡ 0. If q 6= 1, then ∆qf = 0 at the point z0 = −c

q−1
, contradicting

∆qf ≡ b
a
. If q = 1, then any z0 cannot be the pole of f(z). Otherwise all points z0 + kc(k =

0,±1,±2, · · ·) are the poles of f(z), which implies that the order of f(z) is at least one, also
contradicting the assumption of the Theorem 1.2. If f(z) is a transcendental entire function
with order zero, then f(z) has infinitely many zeros. Hence f(z)n + a[f(qz + c) − f(z)]
assumes value b infinitely often.

Case 2 b− a∆qf 6≡ 0. Then

nm(r, f) = m(r, fn) = m(r,
b− a∆qf

ϕ
) ≤ m(r,

1
ϕ

) + m(r, b− a∆qf), (3.10)

nN(r, f) = N(r, fn) = N(r,
b− a∆qf

ϕ
) ≤ N(r,

1
ϕ

) + N(r, b− a∆qf)− N̄0(r)− N̄1(r),

(3.11)

where N̄0(r) is the counting function of zeros of both ϕ and b− a∆qf , N̄1(r) is the counting
function of poles of both ϕ and b− a∆qf .

By (3.10) and (3.11), we have

nT (r, f) ≤ T (r,
1
ϕ

) + T (r, b− a∆qf)− N̄0(r)− N̄1(r) + O(1)

≤ T (r, ϕ) + T (r, b− a∆qf)− N̄0(r)− N̄1(r).
(3.12)

From ϕ = b−a∆qf

fn , we know that the poles of ϕ are generated by the zeros of f and the
poles of both ϕ and b− a∆qf , thus

N̄(r, ϕ) ≤ N̄(r,
1
f

) + N̄1(r). (3.13)
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From ϕ = b−a∆qf

fn , we know that the zeros of ϕ are generated by the poles of f and the
zeros of both ϕ and b− a∆qf , thus

N̄(r,
1
ϕ

) ≤ N̄(r, f) + N̄0(r). (3.14)

Applying the Nevanlinna second main theorem, thus from (3.13) and (3.14), we get

T (r, ϕ) ≤ N̄(r, ϕ) + N̄(r,
1
ϕ

) + N̄(r,
1

ϕ− 1
) + S(r, f)

≤ N̄(r,
1
f

) + N̄(r, f) + N̄(r,
1

ϕ− 1
) + N̄0(r) + N̄1(r) + S(r, f).

(3.15)

By Lemma 2.2, we have

T (r, b− a∆qf) ≤ 2T (r, f) + S(r, f). (3.16)

Substituting (3.15) and (3.16) into (3.12), we have

nT (r, f) ≤ 2T (r, f) + N̄(r, f) + N̄(r,
1
f

) + N̄(r,
1

ϕ− 1
) + S(r, f)

≤ 4T (r, f) + N̄(r,
1

ϕ− 1
) + S(r, f).

(3.17)

That is

(n− 4)T (r, f) ≤ N̄(r,
1

ϕ− 1
) + S(r, f) = N̄(r,

1
f(z)n + a[f(qz + c)− f(z)]− b

) + S(r, f)

on a set of lower logarithmic density 1.
The above inequality shows that f(z)n +a[f(qz+c)−f(z)]−b has infinitely many zeros

when n ≥ 5. Thus the proof of Theorem 1.2 is completed.

4 Proofs of Theorem 1.3–Theorem 1.6

Proof of Theorem 1.3 Suppose that f(z) has infinitely many zeros, then H(z) =
f(z)∆qf(z) has infinitely many zeros. If f(z) has only finitely many zeros, then we can set

f(z) = P (z)eh(z),

where P (z)(6≡ 0), h(z) are polynomials and σ(f) = degh(z)(≥ 1), thus

∆qf(z) = P (qz)eh(qz) − P (z)eh(z) = eh(z)[P (qz)eh(qz)−h(z) − P (z)].

By the condition qσ(f) 6= 1, we obtain that h(qz)−h(z) 6≡ constant. Thus using Lemma
2.5, we get that P (qz)eh(qz)−h(z)−P (z) has infinitely many zeros, that is, H(z) = f(z)∆qf(z)
has infinitely many zeros.

Thus Theorem 1.3 is proved.
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Proof of Theorem 1.4 Suppose d(6= 0) is a Borel exceptional value of f(z), we can
set

f(z) = d + p(z)eαzk

,

where k is a positive integer, α(6= 0) is a complex constant and p(z)(6≡ 0) is an entire function
satisfying

σ(p) < σ(f) = k,

thus
f(qz) = d + p(qz)eαqkzk

= d + p(qz)eα(qk−1)zk

eαzk

= d + p(qz)p1(z)eαzk

,

where p1(z) = eα(qk−1)zk

, p1(z)(6≡ 0) is an entire function satisfying σ(p1(z)) = k or 0.
So

H(z) = p(z)[p(qz)p1(z)− p(z)]e2αzk

+ d[p(qz)p1(z)− p(z)]eαzk

. (4.1)

Since f(qz)− f(z) 6≡ 0, this gives

p(qz)p1(z)− p(z) 6≡ 0. (4.2)

On combining (4.1) with (4.2), we deduce

σ(H) = σ(f) = k. (4.3)

If d∗(∈ C) is a Borel exceptional value of H(z), then we can set

H(z) = d∗ + p∗(z)eβzk

, (4.4)

where β(6= 0) is a complex constant, p∗(z)(6≡ 0) is an entire function satisfying

σ(p∗(z)) < σ(H(z)) = k,

(4.1) and (4.4) give that

p(z)[p(qz)p1(z)− p(z)]e2αzk

+ d[p(qz)p1(z)− p(z)]eαzk − p∗(z)eβzk − d∗ = 0. (4.5)

If β 6= 2α or β 6= α, combining Lemma 2.4 with (4.5), we get

p(qz)p1(z)− p(z) ≡ 0,

this contradicts with (4.2).
Thus, any finite value a is not the Borel exceptional value of H(z). Hence H(z) assumes

every value a ∈ C infinitely often.
It follows from (4.3) that λ(H − a) = σ(H) = σ(f). Thus Theorem 1.3 is proved.
Proofs of Theorem 1.5 and Theorem 1.6 In the following, we only give the proof

of Theorem 1.5. Theorem 1.6 can be proved similarly, we omit its proof.
Obviously, if a = 0, noting that ∆qf(z) is an entire function and f(z) has infinitely

many zeros, we get that H(z) has infinitely many zeros.
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Now assume that a 6= 0 and H(z)− a has only finitely many zeros, then we can set

H(z)− a = f(z)f(qz)− f(z)2 − a = p(z)eh(z), (4.6)

where p(z), h(z) are polynomials. It follows from the condition of Theorem 1.5 that H(z)
is a transcendental entire function, hence p(z) 6≡ 0 and deg h(z) ≥ 1. Taking derivatives in
both sides of (4.6) and eliminating eh(z), we get

[f(z)f(qz)]′

f(z)f(qz)
− [2f(z)]′

f(qz)
=

p′(z) + p(z)h′(z)
p(z)

{1− f(z)
f(qz)

− a

f(z)f(qz)
}. (4.7)

From p(z), h(z) are polynomials satisfying p(z) 6≡ 0 and deg h(z) ≥ 1, we get p′(z) +
p(z)h′(z) 6≡ 0. Since f(z) has infinitely many multiple zeros, so there exists a sufficiently
large point z0, where z0 is the zero of f(z) with multiplicity k ≥ 2, p′(z0) + p(z0)h′(z0) 6= 0
and p(z0) 6= 0. Next we discuss the following two cases.

Case 1 If z0 is the zero of f(qz) with multiplicity kq ≥ 1, then z0 is the simple pole of
[f(z)f(qz)]′

f(z)f(qz)
and the pole of − [2f(z)]′

f(qz)
with multiplicity kq − k + 1. However, z0 is the pole of

f(z)
f(qz)

with multiplicity kq − k and the pole of a
f(z)f(qz)

with multiplicity kq + k. This shows
that (4.7) is a contradiction.

Case 2 If f(qz0) 6= 0 , then z0 is the simple pole of [f(z)f(qz)]′

f(z)f(qz)
and the zero of − [2f(z)]′

f(qz)
.

However, z0 is the zero of f(z)
f(qz)

and the pole of a
f(z)f(qz)

with multiplicity k ≥ 2. This shows
that (4.7) is also a contradiction.

Then H(z) assumes every value a ∈ C infinitely often.
Thus the proof of Theorem 1.5 is completed.
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q -差分多项式的值分布

王琼燕, 叶亚盛

(上海理工大学理学院, 上海 200093)

摘要: 本文研究了零级的亚纯函数的q -差分多项式的值分布. 利用Nevanlinna理论, 得到了以

下结果. 设f是零级的超越亚纯函数, m是非负整数, q, a, c ∈ C \ {0}, b ∈ C, α(z)是f(z)的小函数.如

果f(qz+c)−f(z) 6≡ 0, n ≥ 5,则f(z)n(f(z)m−a)[f(qz+c)−f(z)]−α(z)和f(z)n+a[f(qz+c)−f(z)]−b有

无穷多个零点. 该结果改进了定理D中的n ≥ 7和定理E中的n ≥ 8.
关键词: 零级; 差分多项式; 小函数; Borel例外值
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