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Abstract:In this paper, we study the data envelopment analysis (DEA) model with uncertain

output parameters. By using robust optimization method, a robust DEA model is presented,

numerical experiment indicates that this model is reliable for efficiency estimating and ranking

strategies. This robust DEA model can deal with unknown-but-bounded uncertainty, in which the

distributions of the random data entries are permitted to be unknown. Compared with the existing

model which considers uncertain data with symmetrical distribution only, the robust DEA model

suggested in the paper has wider applications.
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1 Introduction

Data envelopment analysis (DEA) is a mathematical programming methodology for
evaluating and measuring the relative efficiencies of a set of decision making units (DMUs)
that use multiple inputs to produce multiple outputs. Due to its solid underlying mathe-
matical basis and wide applications to real-world problems, much effort has been devoted
to the DEA methods since the pioneering work of [1, 2] summarized the major research in
DEA over the last 30 years, which provided a good research framework.

In the conventional DEA models, all the data are assumed to have the form of specific
numerical values which are “known exactly”. However, this situation may not always
be true. In reality, the data of real-world problems more often than not are uncertain—not
known exactly at the time the problem is being solved. In applications one cannot ignore the
possibility that even a small uncertainty in the data can make the nominal optimal solution
to the problem completely meaningless from a practical viewpoint. [3] showed that a small
perturbation on data of linear programming problem could lead heavily infeasible solution.
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As a linear programming based approach, DEA will never be able to escape from the impact
of uncertainty, i.e., a small perturbation on output data of DMU could make a big change on
the efficiencies, so the results of the ranking could be unreliable. Consequently, there exists
a real need of a methodology capable of generating a robust solution, one that is immunized
against the effect of data uncertainty.

In this paper, we consider the perturbation in output data and propose a new robust
DEA model based on the adaptation of recently developed robust optimization approaches
proposed by [4]; [5] proposed a robust DEA model with consideration of uncertainty on
output parameters for the performance assessment of electricity distribution companies.
However, the assumption of symmetric data uncertainty made in their paper could be too
restrictive for many real-world applications; [6] considered the DEA with uncertain data, they
proposed a second order cone model. In this paper, we relax the assumption of symmetric
data uncertainty and construct the robust formulation for asymmetric data uncertainty, the
model we present is a linear programming problem.

This paper is organized as follows. We first present the fundamentals of robust opti-
mization in Section 2. In Section 3, we illustrate the classical DEA model and propose the
robust DEA model when the output data are uncertain. In Section 4, we demonstrate some
experimental results. Finally, in Section 5, we sum up our conclusions.

2 Robust Optimization

To present the robust optimization method, consider a linear programming problem

max cT x,

s.t. Ax ≤ b, (2.1)

l ≤ x ≤ u,

where c, l, u ∈ Rn, b ∈ Rm, A = (aij) is a m× n matrix, and x ∈ Rn is the vector of decision
variables. We assume, without loss of generality, that only the elements of the matrix A are
subject to uncertainty. In fact, if c and b are also uncertain, we can rewrite the problem as

max c̃T x̃,

s.t. Ãx̃ ≤ 0,

l̃ ≤ x̃ ≤ ũ

with x̃ = (z, x, y), c̃ = (1, 0, 0), Ã =

(
0 A −b

1 −cT 0

)
, l̃ = (zL, l, 1), and ũ = (zU , u, 1),

where zL and zU are finite constants as long as all the components of c are bounded. In this
new formulation, only the matrix Ã contains uncertain data.

Consider a particular row i of the matrix A and let Ji be the set of coefficients in row
i that are subject to uncertainty. Each entry aij , j ∈ Ji is modeled as a symmetric and
bounded random variable that takes values in [āij − âij , āij + âij ].
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Given the data uncertainty structure for A, the traditional linear optimization method-
ology elect to solve the nominal formulation, where each random aij is replaced by its mean
value:

max cT x,

s.t.
∑

j

āijxj ≤ bi, ∀i, (2.2)

l ≤ x ≤ u.

Small data uncertainty is just ignored as if the given (“nominal”) data were exact,
and the resulting nominal solution is what recommended for use, in hope that small data
uncertainties will not affect significantly the feasibility and optimality properties of this
solution. However, this hope is not necessarily justified. The analysis of linear optimization
problems from the NETLIB collection reported in Ben-Tal & Nemirovski [3] revealed that
for 13 of 94 NETLIB problems, random 0.01percent perturbations of the uncertain data can
make the nominal optimal solution severely infeasible: with a non-negligible probability, it
violates some of the constraints by 50 percent and more. Consequently, this leads one to
consider a solution that is guaranteed to satisfy Ax ≤ b for all realizations of the random
aij ’s, while maximizing the objective value. To obtain such a solution, Soyster [7] proposed
the following robust formulation :

max cT x,

s.t.
∑

j

āijxj +
∑
j∈Ji

âijyj ≤ bi, ∀i,

−yj ≤ xj ≤ yj , ∀j, (2.3)

l ≤ x ≤ u,

y ≥ 0.

It can be proved that the optimal solution of (2.3) is a feasible solution of (2.1) for every
possible realization of A. Although the Soyster’s method provides the most robust solution,
it is also the most conservative in practice in the sense that the robust solution has an
objective function value much worse than the objective function value of the solution of
the nominal linear optimization problem. To address this conservatism, [8] proposed the
following robust problem:

max cT x,

s.t.
∑

j

āijxj +
∑
j∈Ji

âijyj + Ωi

√∑
j∈Ji

â2
ijz

2
ij ≤ bi, ∀i,

−yij ≤ xj − zij ≤ yij , ∀i, j ∈ Ji, (2.4)

l ≤ x ≤ u,

y ≥ 0,
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where Ωi, which is dependent upon the user’s risk preference, is a user defined parameter
and adjusts the trade-off between robustness and optimality. The authors have shown that
the probability that the i constraint is violated at most exp(−Ω2

i )/2. This robust model is
less conservative than Model (2.3) as every feasible solution of the latter problem is a feasible
solution to the former problem. However, Model (2.4) is a second order cone problem, which
is more demanding computationally than the linear Model (2.3).

To overcome this difficulty, [4] presented a new robust formulation. One attractive
aspect of this method is that the new formulation is a linear programming problem. The
authors introduced a budget parameter Γi ∈ [0, |Ji|] for each row i = 1, . . . , m of the matrix
A, which is a user defined parameter that adjusts the robustness of the model and interpreted
as the maximum number of uncertain parameters allowed to take their worst case value. The
role of Γi is in the following way:

If Γi = 0, each aij , j ∈ Ji, is forced to take its mean value āij . If Γi = |Ji|, each
aij , j ∈ Ji, can take values from its range [āij − âij , āij + âij ]. If 0 < Γi < |Ji|, bΓic elements
among aij ,∀j ∈ Ji, can take values from their respective ranges; furthermore, if Γi is not
an integer, one other random element, says aiti

, can take values from its reduced range
[āiti

− (Γi − bΓic)âiti
, āiti

+ (Γi − bΓic)âiti
]; the remaining |Ji| − dΓie random elements are

forced to take their respectively mean values. The role of the parameter Γi is to adjust the
robustness against the level of conservatism of the solution. As surmised in [4], nature could
be restricted in its behavior in that only a subset of the random elements actually deviate
from their respective mean values, in order to adversely affect the solution.

Given Γi for all i, [4] sought a solution that maximizes the objective value under the
restriction that it must remain feasible to (2.1) as long as up to Γi elements out of aij ,∀j ∈ Ji,
are allowed to change. Let Si be a subset of Ji, such that |Si| = bΓic, and let ti ∈ Ji\Si. To
obtain such a solution, [4] constructed the following robust formulation:

max cT x,

s.t.
∑

j

āijxj + max
Si∪ti⊆Ji

{∑
j∈Si

âijyj + (Γi − bΓic)âiti
yti

}
≤ bi, ∀i,

−yj ≤ xj ≤ yj , ∀j, (2.5)

l ≤ x ≤ u,

y ≥ 0.

[4] proved that the probability that the i constraint violation is bounded above by
exp(−Γ2

i )/2|Ji|. Thus, as Γi increases, more protection is given and the solution is more
robust. The authors showed that the above nonlinear robust formulation can be recast as
an equivalent linear programming formulation:
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max cT x,

s.t.
∑

j

āijxj + Γizi +
∑
j∈Ji

pij ≤ bi, ∀i,

zi + pij ≥ âijyj , ∀i, ∀j ∈ Ji,

pij ≥ 0, ∀i, ∀j ∈ Ji,

zi ≥ 0, ∀i,
−yj ≤ xj ≤ yj , ∀j, (2.6)

l ≤ x ≤ u,

y ≥ 0.

3 Robust DEA Model

Assume that we deal with a set of n DMUs converting m inputs into s outputs,
with input-output vectors (xj , yj); j = 1, · · · , n, in which xj = (x1j , · · · , xmj)T and yj =
(y1j , · · · , ysj)T . Define X = [x1, x2, . . . , xn] and Y = [y1, y2, · · · , yn] as m × n and s × n

matrices of inputs and outputs, respectively. The original fractional DEA model which is an
input-oriented CCR model is presented as :

max
vT yj0

uT xj0

,

s.t.
vT yj

uT xj

≤ 1, j = 1, · · · , n, (3.1)

v, u ≥ 0,

which evaluates the relative efficiencies of n DMUs by maximizing the ratio of weighted
summation of outputs to weighted summation of inputs. u and v are weight vectors as-
sociated with inputs and outputs, respectively. In addition, xj0 and yj0 are the input and
output for the DMU under evaluation. This model is a nonlinear programming problem, and
it is equivalent to the following linear programming problem which is more computational
convenient:

max µT yj0 ,

s.t. µT yj − νT xj ≤ 0, j = 1, . . . , n, (3.2)

νT xj0 = 1,

µ, ν ≥ 0.

We assume that only the output data cannot be exactly obtained due to the existence
of uncertainty, so as to avoid the appearance of uncertainty in the input related equality
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constraint. They are only known to lie within the upper and lower bounds represented by
the range [yL

rj , y
U
rj ], where yL

rj > 0. Assume the mean of the random variable yrj is ȳrj . In
order to avoid the appearance of uncertainty in objective function, we express the objective
function as max z, and add the constraint z − µT yj0 ≤ 0 into the constraints. In order
to generate an uncertainty-immune solution, we adopt the robust optimization technique
proposed by [4]. Let Jj be the set of coefficients in column j of matrix Y that are subject
to uncertainty. Choose Γj ∈ [0, |Jj |]. Let

<(Γj) = {yj = (y1j , · · · , ysj)|yij ∈ [ȳij − βij(ȳij − yL
ij), ȳij + βij(yU

ij − ȳij)],

∀i; 0 ≤ βij ≤ 1,∀i;
∑
i∈Jj

βij ≤ Γj , at most one βij is fractional}.

The robust DEA model with output uncertainty is expressed as following:

max z,

s.t. min
yj0∈<(Γj0 )

µT yj0 ≥ z, (3.3)

max
yj∈<(Γj)

µT yj − νT xj ≤ 0, j = 1, . . . , n,

νT xj0 = 1,

µ, ν ≥ 0.

Let Sj be a subset of Jj such that |Sj | = bΓjc, and let t ∈ Jj\Sj . It can be deduced that

min
yj0∈<(Γj0 )

µT yj0 = µT ȳj0 − max
Sj0∪{t}⊆Jj0

{
∑
i∈Sj0

µiy
L
ij0

+ (Γj0 − bΓj0c)µty
L
tj0
},

and

max
yj∈<(Γj)

µT yj = µT ȳj + max
Sj∪{t}⊆Jj

{
∑
i∈Sj

µiy
U
ij + (Γj − bΓjc)µty

U
tj}.

Let

ψj(y, Γj) = max
Sj∪{t}⊆Jj

{
∑
i∈Sj

µiy
U
ij + (Γj − bΓjc)µty

U
tj},

the function ψj(y, Γj) equals to the objective function of the following linear programming
problem:

max
∑
i∈Jj

µiy
U
ijωij ,

s.t.
∑
i∈Jj

ωij ≤ Γj , (3.4)

0 ≤ ωij ≤ 1, ∀i ∈ Jj .
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Its dual problem is

min Γjzj +
∑
i∈Jj

pij ,

s.t. zj + pij ≥ µiy
U
ij ,∀i ∈ Jj , (3.5)

pij ≥ 0, ∀i ∈ Jj ,

zj ≥ 0.

By strong duality of linear programming, since problem (3.4) is feasible and bounded for all
Γj ∈ [0, |Jj |], then the dual problem (3.5) is also feasible and bounded and their objective
values coincide. So we have that ψj(y, Γj) is equal to the objective function value of problem
(3.5). Substituting to problem (3.3) we obtain that the robust DEA model is equivalent to
the following linear optimization problem:

max z,

s.t. µT ȳj0 − (Γj0zj0 +
∑
i∈Jj0

pij0) ≥ z,

µT ȳj + Γjzj +
∑
i∈Jj

pij − νT xj ≤ 0, (3.6)

νT xj0 = 1,

zj + pij ≥ µiy
U
ij , ∀i ∈ Jj , ∀j,

zj0 + pij0 ≥ µiy
L
ij0

, ∀i ∈ Jj0 ,

pij ≥ 0, ∀i ∈ Jj , ∀j,
zj ≥ 0, ∀j,
µ ≥ 0, ν ≥ 0.

This linear programming model can be solved by the simplex method or interior point
method.

4 Numerical Example

In this section, a simple numerical example computed by the Matlab software is con-
sidered to clearly illustrate the proposed robust DEA approach. Now we look at a DEA
example which includes five DMUs, each DMU has three inputs and two outputs. Assume
that the input data xij is deterministic and the output data yij is uncertain, which lies
within the range [ȳij − dL

ij , ȳij + dU
ij ], where ȳij is the nominal output data. Table 1 shows

the input data and the nominal output data.
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Table 1 The input and nominal output data for each DMU

For simplicity, we assume that dL
ij and dU

ij are 0.5 and 1 respectively, Jj is equal to 2, so
Γj can vary between 0 and 2. Denote Γ = (Γ1,Γ2, · · · ,Γ5), we increase Γ from 0 to 1.75, the
efficiency scores of the DMUs are summarized in Figure 1. It is evident that the efficiency
scores of the DMUs are decreasing as Γ increasing, we can call this the price of robustness.
As shown, compared with the others, DMU 2 is the most efficient decision making unit.

Fig. 1 Efficiency scores of the DMUs

5 Conclusion

In this paper, we analyze the impact of output data uncertainty on the result of DEA
and propose a robust model based on the newly developed robust optimization approaches.
The conventional robust DEA model assumed the symmetric data uncertainty: the ranges
of the uncertain elements are symmetrically bounded around their means. We relax the
assumption of symmetric data uncertainty to make our robust DEA model more suitable
for applications. We construct the robust DEA model for asymmetric data uncertainty and
obtain an equivalent linear programming formulation. We implement the proposed model in
a numerical example and the results indicate that considering the output data uncertainties
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when applying DEA approach is very important, and using robust DEA approach could
be more reliable for efficiency evaluation and ranking in multiple criteria decision making
problems.
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数据不确定的鲁棒数据包络分析方法
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摘要: 本文研究了输出参数不确定的数据包络分析(DEA)模型. 利用鲁棒优化方法, 建立了一个鲁

棒DEA模型, 通过数值试验表明了该模型在有效性评价和排序方面的可靠性. 本文的模型可处理分布未知的

不确定数据, 与已有的只考虑对称分布不确定参数的模型相比, 适用范围更广.
关键词: 数据包络分析; 不确定性; 鲁棒优化
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