ON DUALLY FLAT AND CONFORMALLY FLAT
(\(\alpha, \beta\))-METRICS

CHENG Xin-yue, ZHANG Ting, YUAN Min-gao
(School of Math. and Statistics, Chongqing University of Technology, Chongqing 400054, China)

Abstract: In this paper, from the relation between the sprays of two dually flat and conformally flat \((\alpha, \beta)\)-metrics, we obtain that locally dually flat and conformally flat Randers metrics are Minkowskian. Further, we extend the result to the non-Randers type and show that the locally dually flat and conformally flat \((\alpha, \beta)\)-metrics of non-Randers type must be Minkowskian under an extra condition.

Keywords: \((\alpha, \beta)\)-metric; dually flat Finsler metric; conformally flat Finsler metric, Minkowski metric

2010 MR Subject Classification: 53B40; 53C60

Document code: A Article ID: 0255-7797(2014)03-0417-06

1 Introduction

The notion of dually flat metrics was first introduced by Amari and Nagaoka when they studied the information geometry on Riemannian space [1, 2]. Later on, the notion of locally dually flat Finsler metrics was introduced by Shen [3]. A Finsler metric \(F = F(x, y)\) on an \(n\)-dimensional manifold \(M\) is called the locally dually flat Finsler metric if at every point there is a coordinate system \((x^i)\) in which the geodesic coefficients are in the following form

\[G^i = -\frac{1}{2}g^{ij}H_{ij},\]

where \(H = H(x, y)\) is a local scalar function on the tangent bundle \(TM\) of \(M\) and satisfies \(H(x, \lambda y) = \lambda^p H(x, y)\) for all \(\lambda > 0\). Such a coordinate system is called an adapted coordinate system. It is shown that a Finsler metric on an open subset \(U \subseteq \mathbb{R}^n\) is dually flat if and only if it satisfies the following PDE

\[(F^2)_{x^k y^l} y^k - 2(F^2)_{x^l} = 0.\]

In this case, \(H = -\frac{1}{4}(F^2)_{x^k} y^k\). Recently, Shen, Zhou and the second author studied locally dually flat Randers metrics \(F = \alpha + \beta\) and classified locally dually flat Randers metrics \(F = \alpha + \beta\) with isotropic \(S\)-curvature [4]. Later, Xia characterized locally dually flat \((\alpha, \beta)\)-metrics on an \(n\)-dimensional manifold \(M(n \geq 3)\) [5].

The study on conformal properties has a long history. Two Finsler metrics \(F\) and \(\tilde{F}\) on a manifold \(M\) are said to be conformally related if there is a scalar function \(\sigma(x)\) on \(M\) such that \(F = e^{\sigma(x)} \tilde{F}\). A Finsler metric which is conformally related to a Minkowski metric is called conformally flat Finsler metric. In 1989, Ichijyo and Hashiguchi defined a
conformally invariant Finsler connection in a Finsler space with \((\alpha, \beta)\)-metric and gave the condition for a Randers space to be conformally flat based on their connection (see [6]). Later, S. Kikuchi found a conformally invariant Finsler connection and gave a necessary and sufficient condition for a Finsler metric to be conformally flat by a system of partial differential equations under an extra condition (see [7]). By using Kikuchi’s conformally invariant Finsler connection, Hojo, Matsumoto and Okubo studied conformally Berwald Finsler spaces and its applications to \((\alpha, \beta)\)-metrics (see [8]). Recently, Kang proved that any conformally flat Randers metric of scalar flag curvature is projectively flat and classified completely conformally flat Randers metrics of scalar flag curvature (see [9]). On the other hand, Bacso and the second author studied the global conformal transformations on a Finsler space \((M, F)\). They obtain the relations between some important geometric quantities of \(F\) and their correspondences respectively, including Riemann curvatures, Ricci curvatures and S-curvatures (see [10, 11]). The Weyl theorem states that the projective and conformal properties of a Finsler metric determine the metric properties uniquely. Thus the conformal properties of a Finsler metric deserve extra attention.

In this paper, we study and classify locally dually flat and conformally flat \((\alpha, \beta)\)-metrics. Firstly, we can prove the following theorem.

Theorem 1.1 Let \(F = \alpha + \beta\) be a locally dually flat Randers metric on an \(n\)-dimensional manifold \(M\) \((n \geq 3)\). Assume that \(F\) is conformally flat. Then it must be Minkowskian.

Further, following Xia’s main result on locally dually flat \((\alpha, \beta)\)-metrics in [5], we study and characterize locally dually flat and conformally flat \((\alpha, \beta)\)-metrics of non-Randers type. We get the following theorem.

Theorem 1.2 Let \(F = \alpha \phi(s), s = \frac{\beta}{\alpha}\), be an \((\alpha, \beta)\)-metric on an \(n\)-dimensional manifold \(M\) \((n \geq 3)\). Suppose that \(\phi\) satisfies one of the following conditions:

(i) \(\phi(s)\) is a polynomial of \(s\) with \(\phi'(0) = 0\);

(ii) \(\phi(s)\) is an analytic function with \(\phi'(0) = \phi''(0) = 0\);

(iii) \(\phi'(0) \neq 0, s(k_2 - k_3 s^2)(\phi \phi' - s \phi'' - s\phi''') - (\phi'^2 + \phi\phi''') + k_1(\phi - s\phi') \neq 0\),

where \(k_1, k_2\) and \(k_3\) are constants. Then, if \(F\) is locally dually flat with \(\alpha\) conformally flat, \(F\) must be Minkowskian.

2 Preliminary

Let \(M\) be an \(n\)-dimensional \(C^\infty\) manifold and \(TM\) denotes the tangent bundle of \(M\). A Finsler metric on \(M\) is a function \(F : TM \to (0, \infty)\) with the following properties:

(a) \(F\) is \(C^\infty\) on \(TM\setminus\{0\}\);

(b) At any point \(x \in M, F_x(y) := F(x, y)\) is a Minkowski norm on \(T_xM\),

we call the pair \((M, F)\) an \(n\)-dimensional Finsler manifold.

Let \((M, F)\) be a Finsler manifold and \(g_{i\bar{j}}(x, y) := \frac{1}{2}[F^2(x, y)]_{\bar{i}y_j}\). For any non-zero vector \(y = y^i \frac{\partial}{\partial x^i} \in T_xM, F\) induces an inner product \(g_y\) on \(T_xM\) as \(g_y(u, v) := g_{i\bar{j}}(x, y)u^i\bar{v}_j\), where \(u = u^i \frac{\partial}{\partial x^i} \in T_xM, v = v^j \frac{\partial}{\partial x^j} \in T_xM\).
The geodesic $\sigma = \sigma(t)$ of a Finsler metric F is characterized by the following system of 2nd order ordinary differential equations

$$\frac{d^2 \sigma^i(t)}{dt^2} + 2G^i(\sigma(t), \frac{d}{dt}\sigma(t)) = 0,$$

where $G^i := \frac{1}{2} g^{ij}(\{F^2\} - [F^2]_x y^k - [F^2]_y)$, where $(g^{ij}) = (g_{ij})^{-1}$. G^i are called the geodesic coefficients of F.

By the definition, an (α, β)-metric is a Finsler metric expressed in the following form

$$F = \alpha \phi(s), \quad s = \beta \alpha,$$

where $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ is a Riemannian metric and $\beta = b_i(x)y^i$ is a 1-form with $\|\beta_x\|_\alpha < b_0$, $x \in M$. It is proved (see [12]) that $F = \alpha \phi(\beta/\alpha)$ is a positive definite Finsler metric if and only if the function $\phi = \phi(s)$ is a C^∞ positive function on an open interval $(-b_0, b_0)$ satisfying

$$\phi(s) - s\phi'(s) + (b^2 - s^2)\phi''(s) > 0, \quad |s| \leq b < b_0.$$

In particular, when $\phi = 1 + s$, the metric $F = \alpha \phi(\beta/\alpha)$ is just the Randers metric $F = \alpha + \beta$. Let G^i and G^α_i denote the geodesic coefficients of F and α, respectively. Denote

$$r_{ij} := (b_{ij} + b_{ji}), \quad s_{ij} := \frac{1}{2}(b_{ij} - b_{ji}),$$

$$s^i_j := a^i_{ij}, \quad s_i := b^i s_{ji}, \quad s_0 := s_i y^i, \quad r_{00} := r_{ij} y^i y^j,$$

where $(a^i_j) := (a_{ij})^{-1}$ and b_{ij} denote the covariant derivative of β with respect to α. Then we have

Lemma 2.1 (see [12]) The geodesic coefficients of G^i are related to G^α_i by

$$G^i = G^\alpha_i + \alpha Q s^i_0 + \{ -2Q \alpha s_0 + r_{00} \} \{ \Psi b^i + \Theta \alpha^{-1} y^i \}, \quad (2.1)$$

where $s^i_0 := s^i_j y^j$ and

$$Q := \frac{\phi'}{\phi - s\phi'}, \quad \Theta := \frac{\phi\phi' - s(\phi\phi'' + \phi'\phi')}{2\phi[(\phi - s\phi') + (b^2 - s^2)\phi'']}, \quad \Psi := \frac{\phi''}{2[(\phi - s\phi') + (b^2 - s^2)\phi'']^{\prime}}.$$

In order to prove our theorems, we need some lemmas about locally dually flat (α, β)-metrics. Shen, Zhou and the second author first characterized locally dually flat Randers metrics and obtained the following lemma.

Lemma 2.2 (see [4]) Let $F = \alpha + \beta$ be a Randers metric on an n-dimensional manifold M. Then F is locally dually flat if and only if in an adapted coordinate system, β and α satisfy

$$r_{00} = \frac{2}{3} \theta_\beta - \frac{5}{3} \tau/\beta^2 + [\tau + \frac{2}{3}(\tau b^2 - b_m \theta_m)]\alpha^2, \quad (2.2)$$

$$s_{k0} = -\frac{1}{3}(\theta b_k - \beta \theta_k), \quad (2.3)$$

$$G^\alpha_m = \frac{1}{3}(2\theta + \tau \beta)y^m - \frac{1}{3}(\tau b^m - \theta^m)\alpha^2, \quad (2.4)$$
where \(\tau = \tau(x) \) is a scalar function and \(\theta = \theta_k y^k \) is a 1-form on \(M \) and \(\theta^m := a^{mk} \theta_k \).

Later, Xia characterized locally dually flat \((\alpha, \beta)\)-metrics.

Lemma 2.3 (see [5]) Let \(F = \alpha \phi(\beta/\alpha) \) be an \((\alpha, \beta)\)-metric on an \(n \)-dimensional manifold \(M \) \((n \geq 3)\). Suppose \(F \) is not Riemannian and \(\phi \) satisfies one of the following:

(i) \(\phi(s) \) is a polynomial of \(s \) with \(\phi'(0) = 0; \)

(ii) \(\phi(s) \) is an analytic function with \(\phi'(0) = \phi''(0) = 0; \)

(iii) \(\phi'(0) \neq 0, \) \(s(k_2 - k_3 s^2)(\phi \phi'' - s \phi''') - (\phi'^2 + \phi''') + k_1 \phi(\phi - s \phi') \neq 0, \)

where \(k_1, k_2 \) and \(k_3 \) are constants. Then \(F \) is locally dually flat on \(M \) if and only if \(\alpha \) and \(\beta \) satisfy

\[
\begin{align*}
\sigma_{i0} &= \frac{1}{3} (\beta \theta_i - \theta b_i), \\
\sigma_{r0} &= \frac{2}{3} \theta \beta - (\theta b^l x^l) \alpha^2, \\
G_{\alpha}^l &= \frac{1}{3} (2 \theta y^l + \theta^l \alpha^2),
\end{align*}
\]

where \(\theta := \theta_i(x) y^i \) is a 1-form on \(M \) and \(\theta^l := a^{lk} \theta_k \).

3 Proof of Theorems

Now we are in the position to prove the theorems. First, we prove Theorem 1.1.

Proof of Theorem 1.1 Let \(F = \alpha \phi(\beta/\alpha) \) and \(\tilde{F} = \tilde{\alpha} \phi(\tilde{\beta}/\tilde{\alpha}) \) be two \((\alpha, \beta)\)-metrics. If \(F \) and \(\tilde{F} \) are conformally related, that is \(F = e^{\sigma(x)} \tilde{F} \), then we have the following relations:

\[
\begin{align*}
\tilde{\alpha} &= e^{-\sigma(x)} \alpha, \\
\tilde{\beta} &= e^{-\sigma(x)} \beta, \tilde{a}_{ij} = e^{-2\sigma(x)} a_{ij}, \\
\tilde{b}_i &= e^{-\sigma(x)} b_i,
\end{align*}
\]

where \(\sigma := \frac{\partial \tau}{\partial x^i} \), \(\sigma^i := a^{ij} \sigma_j \), and “\(\parallel \)” denotes the covariant derivative with respect to \(\tilde{\alpha} \).

Let \(F = \alpha + \beta \) and \(\tilde{F} = \tilde{\alpha} + \tilde{\beta} \) be two Randers metrics and \(F = e^{\sigma(x)} \tilde{F} \). Then the above relations still hold. Assume \(F \) is conformally flat, then \(\tilde{F} \) is Minkowskian. In this case, \(\tilde{b}_{ij} = 0 \) and (3.1), (3.2), (3.3) are reduced to:

\[
\begin{align*}
b_{ij} &= b_i \sigma^r a_{ij} - b_j \sigma_i, \\
r_{ij} &= b_i \sigma^r a_{ij} - \frac{1}{2} \sigma_j b_j - \frac{1}{2} \sigma_i b_i, \\
s_{ij} &= \frac{1}{2} \sigma_j b_i - \frac{1}{2} \sigma_i b_j.
\end{align*}
\]

For any Finsler metric \(F \), the geodesic coefficients \(G^i \) can be expressed as:

\[
G^i = \frac{1}{4} g^{il} \{(F^2)_{x^i x^l} y^k - (F^2)_{x^i x^k}\}.
\]

\(420\) Journal of Mathematics Vol. 34
In particular, for \(\bar{\alpha} \) and \(\alpha \), by (3.7), their geodesic coefficients \(G^i_{\bar{\alpha}} \) and \(G^i_{\alpha} \) have the relation

\[
G^i_{\bar{\alpha}} = G^i_{\alpha} - \sigma_0 y^i + \frac{1}{2} \alpha^2 \sigma^i, \tag{3.8}
\]

where \(\sigma_0 := \sigma_k y^k \) and \(\sigma^i := a^i_l \sigma_l \).

If \(F \) is locally dually flat, then Lemma 2.2 holds for \(F \). Note that \(\alpha \) is also conformally flat since \(F \) is conformally flat, then \(\bar{\alpha} \) is Euclidean and \(G^i_{\bar{\alpha}} = 0 \). Combining (2.4) and (3.8) yields

\[
\left\{ \frac{1}{3} (2 \theta + \tau \beta) - \sigma_0 \right\} y^i = \left\{ \frac{1}{3} (\tau b^i - \theta^i) - \frac{1}{2} \sigma^i \right\} \alpha^2. \tag{3.13}
\]

For the dimension of manifold \(M \) satisfies \(n \geq 3 \) and \(\alpha^2 \) is not divisible in this circumstances, we immediately have \(\sigma^i = \frac{\tau}{2} (\tau b^i - \theta^i) \), \(\sigma_0 = \frac{1}{3} (2 \theta + \tau \beta) \). Comparing the above two equations, one easily has

\[
\theta_i = \frac{1}{4} \tau b_i. \tag{3.9}
\]

Combining (2.2), (3.5) and (3.9) we get

\[
\left(\frac{3}{2} \tau - \sigma_0 \right) \beta = (t + \tau + \frac{1}{2} \tau b^2) \alpha^2, \tag{3.10}
\]

where \(t := b_i \sigma^i \).

When \(n \geq 3 \), \(\alpha^2 \) is indivisible, then from (3.10) we have

\[
\sigma_i = \frac{3}{2} \tau b_i, \tag{3.11}
\]

\[
t + \tau + \frac{1}{2} \tau b^2 = 0. \tag{3.12}
\]

Plugging (3.11) into (3.12) yields \(\tau (1 + 2b^2) = 0 \). Considering that \(1 + 2b^2 \neq 0 \), one has \(\tau = 0 \). Then \(\sigma_i = 0 \), i.e., \(\sigma \) is a constant. In this case, \(F \) is Minkowskian.

In the end, we are going to prove Theorem 1.2.

Proof of Theorem 1.2 Assume that \(F = \alpha \phi (\beta / \alpha) \) is an \((\alpha, \beta)\) -metric satisfying the conditions in Theorem 1.2, \(\alpha = e^{\sigma(x)} \bar{\alpha} \) and \(\alpha \) is conformally flat. Then \(\bar{\alpha} \) is Euclidean and (2.5), (2.6), (2.7) in Lemma 2.3 hold. By (2.7) and (3.8) we have

\[
\left(\frac{2}{3} \theta - \sigma_0 \right) y^i = \left(- \frac{1}{2} \sigma^i - \frac{1}{3} \theta^i \right) \alpha^2. \tag{3.13}
\]

Then by (3.13) and the fact that \(\alpha^2 \) is indivisible when \(n \geq 3 \) again, naturally we get

\[
\theta_i = \frac{3}{2} \sigma_i, \tag{3.14}
\]

\[
\theta^i = - \frac{3}{2} \sigma^i. \tag{3.15}
\]

We use \(a_{ij} \) to lower the index of (3.15) and obtain

\[
\theta_i = - \frac{3}{2} \sigma_i. \tag{3.16}
\]

Comparing (3.14) with (3.16), instantly we conclude \(\sigma_i = 0 \) and \(\theta_i = 0 \). Then \(\sigma \) is a constant and obviously \(\alpha \) is Euclidean. According to (2.5) and (2.6), we get \(s_{ij} = 0 \) and \(r_{ij} = 0 \), which implies that \(\beta \) is parallel with respect to \(\alpha \). Therefore, \(F \) is Minkowskian.
References

对偶平坦和共形平坦的\((\alpha, \beta)\)-度量

程新跃, 张 岷, 袁敏高

(重庆理工大学数学与统计学院, 重庆 400054)

摘要: 本文主要研究了对偶平坦和共形平坦的\((\alpha, \beta)\)-度量, 利用对偶平坦和共形平坦与其测地线的关系, 得到了局部对偶平坦和共形平坦的Randers度量是Minkowskian度量的结论。进一步, 推广到非Randers型的情形, 我们证明了局部对偶平坦和共形平坦的非Randers型的\((\alpha, \beta)\)-度量在附加的条件下一定是Minkowskian度量。

关键词: \((\alpha, \beta)\)度量; 对偶平坦的Finsler度量; 共形平坦的Finsler度量; Minkowskian度量

MR(2010)主题分类号: 53B40; 53C60 中图分类号: O186.1