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Abstract: In this work we shall study the existence of weak solutions for a fourth order elliptic

problem. By virtue of mountain pass theorem and fountain theorem, combining with variational

method, several existence theorems for weak solutions are obtained. The results obtained here

improve some existing results in the literature.
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1 Introduction

In this paper, we shall investigate the existence of weak solutions for the fourth order
elliptic problem {

∆2u + c∆u = f(x, u) in Ω,

u = ∆u = 0 on ∂Ω,
(1.1)

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, the parameter c is less than
the first eigenvalue of (−∆,H1

0 ) and f ∈ C(Ω× R,R).
It is well-known that fourth order problems were studied by many authors. For example,

u(4)(t) = f(t, u(t)) subject to boundary value conditions u(0) = u(1) = u′′(0) = u′′(1) = 0
can be used to model the deflection of elastic beams simply supported at the endpoints [1–3].
In [4], Lazer and Mckenna pointed out that fourth order elliptic problems furnish a model
to study traveling waves in suspension bridges. Since then, more general nonlinear fourth
order elliptic boundary value problems were studied, we refer the interested reader to [5–13].

Meanwhile, as is known to all, fountain and dual fountain theorems by Bartsch and
Willem [14, 15] are effective tools for studying the existence of infinitely many large energy
solutions and small energy solutions, for instance, see [16–19] and the references therein.

In [5], Yang and Zhang consider the existence of positive, negative and sign-changing
solutions for (1.1). They present their results on invariant sets of the gradient flows of the
corresponding variational functionals.
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Chen and Tang [16] investigated the fractional boundary value problem of the following
form 




d
dt

(
1
2 0D

−β
t u′(t) +

1
2 tD

−β
T u′(t)

)
+∇F (t, u(t)) = 0 a.e. t ∈ [0, T ],

u(0) = u(T ) = 0.

In their paper, they adopted fountain and dual fountain theorems to obtain the existence of
infinitely many solutions under some adequate conditions. It is no doubt that the results in
the literature are significantly improved.

In this paper, we first adopt mountain pass theorem to obtain the existence of nontrivial
solutions for (1.1) under some appropriate conditions imposed on f , i.e., sublinearity at 0
and superlinearity at ∞ with respect to u. Secondly, we only consider the nonlinearity f is
asymptotically linear at infinity and we utilize fountain theorem to obtain the existence of
infinitely many solutions for (1.1). Note that, this condition at infinity is indeed (f1) of [5].
In [5], the authors assume that the nonlinearity f satisfies conditions (f1), (f4), (f6) and (f7)
(see [5, P130]) to obtain the existence of weak solutions for (1.1). However, in this paper,
we only need conditions (f1) and (f7) to establish the existence of infinitely many solutions
for (1.1). Therefore, our results here improve and extend the corresponding ones in [5].

2 Preliminaries and Main Results

Let Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω. We will always assume the
parameter c is less than the first eigenvalue of (−∆,H1

0 ). Denote by 0 < λ1 < λ2 ≤ · · · ≤ λj ≤
. . . the eigenvalues of (−∆,H1

0 ) and µk(c) = λk(λk−c) the eigenvalues of (∆2+c∆,H1
0∩H2).

We also denote by ϕj the eigenfunction associated with λj and consequently with µj , and
ϕ1 > 0 for x ∈ Ω. We define a space X := H1

0 ∩H2. Clearly, X is a Hilbert space with the
inner product

(u, v) =
∫

Ω

(∆u∆v − c∇u∇v)dx.

We denote by ‖u‖2 the norm in L2(Ω) and ‖u‖ the norm in X which is given by
‖u‖2 = (u, u). Furthermore, we have the Poincaré inequality ‖u‖2 ≥ µ1‖u‖2

2.
We define a functional on X as follows

J(u) =
1
2

∫

Ω

(|∆u|2 − c|∇u|2)dx−
∫

Ω

F (x, u)dx =
1
2
‖u‖2 −

∫

Ω

F (x, u)dx, (2.1)

where F (x, u) =
∫ u

0
f(x, t)dt. Clearly, the existence of weak solutions for (1.1) is equivalent

to the existence of critical points of the functional J . By simple computation, we have

(J ′(u), v) =
∫

Ω

(∆u∆v − c∇u∇v)dx−
∫

Ω

f(x, u)vdx = (u, v)− (Au, v), ∀u, v ∈ X, (2.2)

where (Au, v) =
∫
Ω

f(x, u)vdx, ∀u, v ∈ X. Obviously, J ∈ C1(X,R) (see line 7 from below
in [13, P. 798]).
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As we have mentioned, we utilize the critical point theory to prove our main results. Let
us recall two definitions about (PS) condition and (PS)c condition that will be used below.
One can refer to [20–23] for more details.

Definition 2.1 Let X be a real Banach space and J ∈ C1(X,R). We say J satisfies
(PS) condition if for every sequence {un} ⊂ X such that J(un) is bounded and J ′(un) → 0
as n →∞, there exists a subsequence of {un} which is convergent in X.

Definition 2.2 Let X be a real Banach space, J ∈ C1(X,R) and d ∈ R. We say J

satisfies (PS)c condition if the existence of a sequence {un} ⊂ X such that J(un) → d and
J ′(un) → 0 as n →∞ lead to d is a critical value of J .

Lemma 2.1 (Mountain Pass Theorem) Let X be a Banach space and J ∈ C1(X,R) be
a functional satisfying (PS) condition. If e ∈ X and 0 < r < ‖e‖ are such that

a := max{J(0), J(e)} < inf
‖u‖=r

J(u) =: b,

then c := infγ∈Γ supt∈[0,1] J(γ(t)) is a critical value of J with c ≥ b, where Γ is the set of
paths joining the points 0 and e, i.e., Γ := {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e}.

For j, k ∈ N, X = span{ϕj : j = 1, 2 . . .}. Denote Xj := span{ϕj}, Yk :=
⊕k

j=1 Xj and

Zk :=
⊕∞

j=k+1 Xj . Clearly, X =
⊕

j∈NXj with dimXj < ∞ for all j ∈ N. We also find
X = Yk

⊕
Zk.

Lemma 2.2 (see [14]) Let X be defined above. Suppose that
(A1) J ∈ C1(X,R) is an even functional.

If for every k ∈ N, there exist ρk > rk > 0 such that
(A2) ak := max

u∈Yk,‖u‖=ρk

J(u) ≤ 0;

(A3) bk := inf
u∈Zk,‖u‖=rk

J(u) →∞ as k →∞;

(A4) J satisfies (PS)c condition for all c > 0,
then J has an unbounded sequence of critical values.

Theorem 2.1 If f satisfies the following two conditions:
(H1) f(x, 0) = 0;
(H2) lim

t→0

f(x,t)
t

= ξ, lim
|t|→∞

f(x,t)
t

= η, uniformly a.e. in x ∈ Ω, where

0 ≤ ξ < µ1 = λ1(λ1 − c) < η < +∞,

then (1.1) has at least a weak solution.
Lemma 2.3 Suppose (H1), (H2) hold, then J satisfies (PS) condition.
Proof Since Ω is bounded and (H2) holds, then if {uk} is bounded in X, by using

the Sobolev embedding theorem and the standard procedures, we can get a subsequence
converges strongly in X. So we need only to show that {uk} is bounded in X.

Assume that {uk} ⊂ X is a (PS) sequence, i.e.,

J(uk) → d, J ′(uk) → 0, as k →∞. (2.3)
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From (H2) we know that
|f(x, t)t| ≤ C(1 + |t|2). (2.4)

(2.3) implies that for all ϕ ∈ X,

(J ′(uk), ϕ) =
∫

Ω

(∆uk∆ϕ− c∇uk∇ϕ)dx−
∫

Ω

f(x, uk)ϕdx → 0. (2.5)

Setting ϕ = uk and using (2.4), we have

‖uk‖2 =
∫

Ω

f(x, uk)ukdx + (J ′(uk), uk) ≤ C|Ω|+ C‖uk‖2
2 + o(1)‖uk‖. (2.6)

We claim that ‖uk‖2 is bounded. Assume, by contradiction, that passing to a subsequence,
‖uk‖2

2 →∞ as k →∞. We put ωk := uk

‖uk‖2 , then ‖ωk‖2 = 1. Moreover, from (2.6) we know

‖ωk‖2 ≤ o(1) + C +
o(1)
‖uk‖2

‖uk‖
‖uk‖2

≤ o(1) + C + o(1)‖ωk‖. (2.7)

Hence, ‖ωk‖ is bounded. Passing to a subsequence, we may assume that there exists ω ∈ X

and ‖ω‖2 = 1 such that

ωk ⇀ w, weakly in X, k →∞, ωk → w, strongly in L2(Ω), k →∞.

From (2.5) we derive
∫

Ω

(∆ω∆ϕ− c∇ω∇ϕ)dx−
∫

Ω

ηωϕdx = 0, ∀ϕ ∈ X. (2.8)

Then ω ∈ X is a weak solution of the equation

∆2ω + c∆ω = ηω.

Taking ϕ(x) = ϕ1(x), from (2.8) we have
∫

Ω

(∆ω∆ϕ1 − c∇ω∇ϕ1)dx−
∫

Ω

ηωϕ1dx = 0. (2.9)

On the other hand, since ϕ1(x) > 0 is the eigenfunction of λ1(λ1 − c), we have also
∫

Ω

(∆ω∆ϕ1 − c∇ω∇ϕ1)dx−
∫

Ω

λ1(λ1 − c)ωϕ1dx = 0. (2.10)

Together (2.9) with (2.10), note that ‖ω‖2 = 1, we know that λ1(λ1 − c) = η, which
contradicts λ1(λ1 − c) < η. Hence ‖uk‖2 is bounded. Then, from (2.6) we know that
{uk} is bounded in X. This completes the proof.

Proof of Theorem 2.1 (H2) implies that, for any ε > 0, there exists C1 > 0, such
that

F (x, t) ≥ 1
2
(η − ε)t2 − C1,∀x ∈ Ω, t 6= 0. (2.11)
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Taking ε > 0 such that η − ε > µ1, φ = ϕ1, from (2.11) we obtain

J(sφ) ≤ 1
2

∫

Ω

(|∆(sφ)|2 − c|∇(sφ)|2)dx− 1
2
(η − ε)

∫

Ω

s2φ2dx + C1|Ω|

≤ s2

2
‖φ‖2 − s2

2
(η − ε)‖φ‖2

2 + C1|Ω|

≤ s2

2

(
1− η − ε

µ1

)
‖φ‖2 + C1|Ω|.

Therefore, by 1− η−ε
µ1

< 0 implies

lim
s→∞

J(sφ) → −∞. (2.12)

From (H2), we can find α, such that 2 < α < 2∗, where 2∗ =

{
2N

N−2
, N > 2,

+∞, N ≤ 2.
(H1), (H2)

imply that for all given ε > 0, there exists C0 > 0, such that

F (x, t) ≤ 1
2
(ξ + ε)|t|2 + C0|t|α. (2.13)

(2.13), the Poincaré inequality and the Sobolev embedding theorem enable us to obtain

J(u) ≥ 1
2
‖u‖2 − ξ + ε

2

∫

Ω

|u|2dx− C0

∫

Ω

|u|αdx ≥
(

1
2
− ξ + ε

2µ1

)
‖u‖2 − Cs‖u‖α, (2.14)

where Cs is a constant. In (2.14), by taking ε > 0 such that ξ + ε < µ1, and choosing
‖u‖ = ρ > 0 small enough, we obtain J(u) ≥ R > 0, if ‖u‖ = ρ.

From (2.12), we know that there exists e ∈ X, ‖e‖ > ρ, such that J(e) < 0. Define

Γ := {γ : [0, 1] → X|γ is continuous and γ(0) = 0, γ(1) = e},

and c = infγ∈Γ maxt∈[0,1] J(γ(t)). From Lemma 2.1 it follows that

J(0) = 0, J(e) < 0, and J(u)|∂Bρ
≥ R > 0.

Moreover, J satisfies (PS) condition by Lemma 2.3. By the mountain pass theorem, we know
c is a critical value of J and there is at least one nontrivial critical point in X corresponding
to this value. This completes the proof.

Theorem 2.2 If f satisfies the following two conditions:
(H3) µk < lim inf

|t|→∞
f(x,t)

t
≤ lim sup

|t|→∞
f(x,t)

t
< µk+1, uniformly in Ω;

(H4) f(t,−u) + f(t, u) = 0,
then (1.1) has infinitely many weak solutions.

Lemma 2.4 (see [5, Lemma 4.1]) Let f satisfy (H3). Then J satisfies (PS) condition.
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Proof Take µk < b1 ≤ b2 < µk+1 and M > 0 such that for |u| ≥ M , b1 ≤ f(x,u)
u

≤ b2

by (H3). Now let {uk} be a (PS) sequence for J(u). Writing uk = vk + wk with vk ∈ Yk and
wk ∈ Zk. Considering the inner product of J ′(u) and vk − wk, we find

o(1) · ‖uk‖ = (J ′(uk), vk − wk) = (uk, vk − wk)−
∫

Ω

f(x, uk)(vk − wk)dx

=(vk + wk, vk − wk)−
∫

|uk|≥M

f(x, uk)
uk

(v2
k − w2

k)dx−
∫

|uk|<M

f(x, uk)(vk − wk)dx

≤ ‖vk‖2 − ‖wk‖2 − b1

∫

|uk|≥M

v2
kdx + b2

∫

|uk|≥M

w2
kdx−

∫

|uk|<M

f(x, uk)(vk − wk)dx

=‖vk‖2 − ‖wk‖2 − b1

∫

Ω

v2
kdx + b1

∫

|uk|<M

v2
kdx + b2

∫

Ω

w2
kdx− b2

∫

|uk|<M

w2
kdx

−
∫

|uk|<M

f(x, uk)(vk − wk)dx

≤‖vk‖2 − ‖wk‖2 − b1

µk

‖vk‖2 +
b2

µk+1

‖wk‖2 + b1

∫

|uk|<M

v2
kdx− b2

∫

|uk|<M

w2
kdx

−
∫

|uk|<M

f(x, uk)(vk − wk)dx.

(2.15)
By (2.15) and Hölder inequality, we obtain

o(1) · ‖uk‖ ≤
(

1− b1

µk

)
‖vk‖2 +

(
b2

µk+1

− 1
)
‖wk‖2 +

b1b2

b2 − b1

∫

|uk|<M

u2
kdx

+
(∫

|uk|<M

|f(x, uk)|2dx

) 1
2
(∫

|uk|<M

|vk − wk|2dx

) 1
2

≤
(

1− b1

µk

)
‖vk‖2 +

(
b2

µk+1

− 1
)
‖wk‖2 +

b1b2

b2 − b1

M2|Ω|+ C

(∫

|uk|<M

|uk|2dx

) 1
2

≤
(

1− b1

µk

)
‖vk‖2 +

(
b2

µk+1

− 1
)
‖wk‖2 +

b1b2

b2 − b1

M2|Ω|+ CM
√
|Ω|

≤ − a‖uk‖2 +
b1b2

b2 − b1

M2|Ω|+ CM
√
|Ω|.

So, {uk} is bounded, where a = min
{

b1
µk
− 1, 1− b2

µk+1

}
> 0. A standard argument shows

that J(u) satisfies e (PS) condition. This completes the proof.
Proof of Theorem 2.2 (H4) and Lemma 2.4 enable us to obtain that (A1) and (A4)

in Lemma 2.2 are satisfied.
By lim inf

|t|→∞
f(x,t)

t
> µk, there exist M1 > 0 and ε > 0 such that f(x, t) ≥ (µk + ε)t, for all

|t| ≥ M1 and x ∈ Ω. We know f(x, t)− (µk + ε)t is continuous and bounded on x ∈ Ω and
|t| ≤ M1, and thus there exists C > 0 such that −C ≤ f(x, t)− (µk + ε)t ≤ C. Therefore,

f(x, t) ≥ (µk + ε)t− C, ∀(x, t) ∈ Ω× R. (2.16)
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By the definition of F (x, u), we see

F (x, u) =
∫ u

0

f(x, t)dt ≥
∫ u

0

[(µk + ε)t− C]dt ≥ u2

2
(µk + ε)− Cu, ∀(x, t) ∈ Ω× R. (2.17)

For any u ∈ Yk, and it is easy to verify that ‖ · ‖2 is a norm of Yk. Since all the norms of
a finite dimensional normed space are equivalent, so there exists positive constant C1 such
that ‖u‖2 ≤ C1‖u‖. In view of (2.17), by Hölder inequality, we obtain

J(u) =
1
2
‖u‖2 −

∫

Ω

F (x, u)dx ≤ 1
2
‖u‖2 −

∫

Ω

u2

2
(µk + ε)dx + C|Ω| 12 ‖u‖2

≤ 1
2
‖u‖2 − µk + ε

2µk

‖u‖2 + CC1|Ω| 12 ‖u‖ =
1
2
‖u‖2

(
1− µk + ε

µk

)
+ CC1|Ω| 12 ‖u‖.

(2.18)

Since 1− µk+ε
µk

< 0, then there exists positive constants dk such that

J(u) ≤ 0, for each u ∈ Yk and ‖u‖ ≥ dk. (2.19)

On the other hand, by lim sup
|t|→∞

f(x,t)
t

< µk+1, there exist M2 > 0 and ε ∈ (0, µk+1) such that

f(x, t) ≤ (µk+1 − ε)t, |t| ≥ M2

and x ∈ Ω. For the reason that f(x, t)− (µk+1 − ε)t is continuous and bounded on |t| ≤ M2

and x ∈ Ω, then there is a C > 0 such that f(x, t)− (µk+1 − ε)t ≤ C, |t| ≤ M2 and x ∈ Ω.
Consequently,

f(x, t) ≤ (µk+1 − ε)t + C, ∀(x, t) ∈ Ω× R. (2.20)

Therefore, we have

F (x, u) ≤ u2

2
(µk+1 − ε) + Cu, ∀(x, t) ∈ Ω× R. (2.21)

For any u ∈ Zk, let βk := sup
u∈Zk,‖u‖=1

‖u‖2. Since X is compactly embedded into L2(Ω), there

holds (see [21, Lemma 3.8]), βk → 0, as k →∞. By (2.21) and Hölder inequality, we arrive
at

J(u) =
1
2
‖u‖2 −

∫

Ω

F (x, u)dx ≥ 1
2
‖u‖2 −

∫

Ω

u2

2
(µk+1 − ε)dx−

∫

Ω

Cudx

≥1
2
‖u‖2 − µk+1 − ε

2µk+1

‖u‖2 − C|Ω| 12
(∫

Ω

|u|2dx

) 1
2

≥1
2
‖u‖2

(
1− µk+1 − ε

µk+1

)
− C|Ω| 12 βk‖u‖.

(2.22)

Choosing rk := 1/βk, we easily rk →∞ as k →∞, then

J(u) ≥ 1
2

(
1− µk+1 − ε

µk+1

)
r2

k − C|Ω| 12 →∞, as k →∞.
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Hence, bk := inf
u∈Zk,‖u‖=rk

J(u) → ∞ as k → ∞. Combining this and (2.19), we can take

ρk := max{dk, rk + 1}, and thus ak := max
u∈Yk,‖u‖=ρk

J(u) ≤ 0.

Up until now, we have proved the functional J satisfies all the conditions of Lemma 2.2,
then J has an unbounded sequence of critical values. Equivalently, (1.1) has infinitely many
weak solutions. This completes the proof.
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四阶椭圆方程的弱解

王 勇

(江南大学理学院,江苏无锡 214122)

摘要: 本文研究了一个四阶椭圆方程解的存在性问题. 利用山路定理和喷泉定理, 结合变分方法, 获得

了该问题弱解的几个存在性定理，推广了现有的一些结果.
关键词: 椭圆方程; 山路定理; 喷泉定理; 弱解
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