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Abstract: The paper studies the disturbed Hopfield neural network of the large-scale simul-

taneous linear equations, and points out the criterion of neural network convergence. Under certain

conditions, the steady-state errors of this network are consistently bounded or convergent to zero.

That is to say, the network system has good robustness. We give a simulation example, and verify

the authenticity of the conclusion.
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1 Introduction

Real-time problems of solving the large-scale simultaneous linear equations, which is
in the sense of the minimal norm, often occur in the areas such as optimization, system
identification, intelligent control, optimal control, robotics and control [1–4]. For many
large-scale simultaneous linear equations, the number of unknows involved is very large.
These large-scale problems often need to be solved in real time.

Neural networks were proposed for solving real-time problems involved simultaneous
equations, including linear cases [5–10]. We develop an electronic neural network called the
gradient Hopfield neural network for solving the simultaneous linear equations. Meanwhile,
we consider the case which will be errors such as circuit noise, the opamp finite gains and
frequent correlations. Assume the errors are bounded and uncertain, then this kind of errors
can be understood as system parameter perturbations caused by the disturbed effects or the
integration effects from the internal and the external of the entire system. So, as to such
a Hopfield neural network whose disturbance gradient is bounded and uncertain, the first
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thing should be considering its robustness. That is to say, under bounded conditions, for
any value of the disturbance, the errors between the effective solution and the exact solution
of the model are consistent or convergent [4].

The paper will study the robustness of disturbance gradient Hopfield neural network
from the theory and will offer numerical simulation of some instances to check the validity
of the theory. As follows: In Section 2, the disturbance gradient neural network. In Section
3, the robustness analysis. In Section 4, Matlab simulation of robustness. In Section 5,
conclusion.

2 Disturbance Gradient Described by Hopfield Neural Network

Based on LMS AX = b errors minimum problems, the negative gradient neural network
model (theoretical model) [4] with non-linear activation function can be described as follows:

ẋ(t) = −αAT F (Ax(t)− b), (2.1)

where A = (aij)m×n ∈ Rm×n, x = (x1, x2, · · · , xn)T ∈ Rn, b = (b1, b2, · · · , bm)T ∈ Rm.

And the matrix A is full row rank, namely rank(A) = m. Parameter α > 0 determines the
convergence of the network.

Non-linear activation function f(·) usually takes the following types.
(1) The linear activation function f(u) = u.

(2) Bipolar sigmoid activation function

f(u) =
1− e−ξu

1 + e−ξu
, ξ ≥ 2.

(3) Power activation function

f(u) = up, p ≥ 3

and odd.
(4) Power-sigmoid activation function

f(u) =





up , |u| ≥ 1,

1 + e−ξ − e−ξu

1− e−ξ + e−ξu
, others,

ξ ≥ 2, ρ ≥ 3

and odd.
Remark 1 For the power-sigmoid and bipolar sigmoid activation function, at any fixed

point y = (y1, y2, · · · , ym)T ∈ Rm, Jacobi matrix ∂F (y)
∂y

= diag(f ′(y1), f ′(y2), · · · , f ′(ym)) is
a diagonal positive definite matrix.

In neural network (2.1), the negative gradient neural network model (actual model)
with parameter disturbance can be described as

Ẋ(t) = −α(A +4A)T F [(A +4A)X(t)− (b +4b)]. (2.2)
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Or the negative gradient neural network model (actual model) with overall disturbance can
be described as

ẋ(t) = −αAT F (Ax(t)− b) +4c, (2.3)

where 4A(t) ∈ Rm×n and 4b(t) ∈ Rm are circuit implementation errors or parameter dis-
turbance of the matrix A and b, respectively, 4c(t) ∈ Rn is the error for the non-accurate
implementation of the overall model and there exists a positive number to make the consis-
tently bounded disturbance conditions meet

max{‖4A(t)‖, ‖4b(t)‖, ‖4c(t)‖} ≤ ε,∀t ≥ 0. (2.4)

3 Robustness Analysis

First, we give two theorems to character convergence rate properties and convergence
properties of equilibrium point of the disturbed Hopfield neural network.

Theorem 2 [4] The convergence rate of non-linear neural network system (2.1) depends
on parameter and activation functions. The greater α is, the faster network converge. And

(1) When using the linear activation function, the neural network (2.1) globally expo-
nential converges.

(2) When using the Bipolar-sigmoid activation function, in the interval [−c, c] ⊂ [−1, 1],
the neural network (2.1) converges faster than the linear activation function, where c is the
intersection abscissa value of the bipolar sigmoid curve and the linear f(u) = u .

(3) When using the power activation function, within the interval (−∞,−1] and [1,+∞),
neural network converges faster than the linear activation function.

(4) When using the power-sigmoid activation function, in the interval (−∞,+∞), neural
network converges faster than the linear activation function.

The following content will focus on the robustness of system (2.3).

Theorem 3 For the disturbed network system (2.3), as long as the parameter α is
chosen large enough, it’s easy to get that the steady-state error of the network model ‖x(t)−
x∗‖ → 0, t → ∞. In other words, when the parameter is chosen appropriately, even if the
implementation errors are large, the network still converges to the exact solution of the
network system (2.1).

Proof Note x∗ as the exact solution of the network system (2.1), x(t) as the disturbance
solution of network (2.3) at any initial value. Then two equations can be founded

ẋ∗ = −αAT F (Ax∗ − b)ẋ(t) = −αAT F (Ax(t)− b) +4c.

Subtracting the two formulas above, note z = x − x∗ as dynamic error, y∗ = Ax∗ − b as
residuals, then

ż(t) = −αAT (F (y∗ + Az(t)− F (y∗)) +4c(t). (3.1)
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When ‖Az‖ is small enough, F (y∗+Az−F (y∗) ≈ ∂F (y∗)
∂y

·Az can be achieved. So the partial
linear system of formula (3.1) at the point y∗ is

ż(t) = −α(AT ∂F (y∗)
∂y

A)z +4c(t). (3.2)

By Remark 1, we have ∂F (y∗)
∂y

= diag(f ′(y∗1), f
′(y∗2), · · · , f ′(y∗n)) is a positive definite matrix.

Since A is a full row rank matrix, it’s not difficult to prove that AT ∂F (y∗)
∂y

A also is a positive
definite matrix. This is because ∀x ∈ Rn, there always has

xT (AT ∂F (y∗)
∂y

A)x = xT f ′i((y
∗
1)A

T
i Aix = f ′i((y

∗
1)(Aix)2 ≥ 0.

When and only when Aix = 0, namely, Ax = 0, the equation can be achieved as follow:

xT (AT ∂F (y∗)
∂y

A)x = 0,

where Ai stands for the i row of Ai. Since A is a full row matrix, so it can be equivalent to
x = 0.

Also because the disturbance 4c(t) satisfies the bounded condition (2.4), by the linear
system theory, when the parameter α is large enough, the eigenvalues of system (3.2) will
stay in the left half complex plane and away from the imaginary axis. Thus system (3.2)
converges, that is z = x− x∗ → 0. Theorem 3 is proved.

Remark 2 By the proof of theorem, we know the key condition of theorem is that the
matrix AT ∂F (y∗)

∂y
A is a positive definite matrix, which needs

∂F (y∗)
∂y

= diag(f ′(y∗1), f
′(y∗2), · · · , f ′(y∗m))

is a positive definite diagonal matrix. The power-sigmoid and sigmoid activation functions
both can ensure the condition are met. Therefore, these two activation functions will have
better performance than the linear activation function.

4 The Matlab Simulation of Robustness

To test the robustness of the gradient-based neural network, we consider the following
LMS problem

A =




1 0 1 2 0 1 1 0 1
0 0 0 1 1 0 1 1 0
0 0 0 1 1 1 1 1 1
1 0 1 2 0 2 1 0 1
1 1 0 2 2 0 1 1 0
1 1 1 2 2 2 1 1 1
1 0 1 1 0 1 1 0 1
1 1 0 1 1 0 1 1 0
0 1 1 1 1 1 1 1 1




, b =




1
1
2
1
1
0
0
1
0




.
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Corresponding to the power-sigmoid activation function of neural network system (2.1)
when ξ = 4, p = 3. We have the following model implementation errors of sinusoidal form

4c(t) = ε(cos 3t 0 0 − sin 3t 0 sin 2t 0 sin 3t 0)T .

Using Matlab internal function ode45, plot the solution curve of the network in figures 1–3,
respectively, when α = 1, α = 10 and α = 100. Just as follows:
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Figure 6

Figures 4–6 show us clearly that even when there are great errors, network (2.3) can
run well and the error norm ‖x(t)− x∗‖ is consistently bounded. At the same time, when α

changes from 1 to 100, convergence time becomes faster and the errors fall down to a very
small value when steady-state comes. The simulation result again confirms the correctness
and effectiveness of the theoretical analysis in the paper.

5 Conclusion

Gradient-based Hopfield neural network (2.1) provides an effective real-time parallel
computing to solve minimal norm of least mean square problems. By using different activa-
tion functions, the paper focuses on the disturbed neural network and analysis its robustness.
The results show that when the activation function is power-sigmoid or bipolar-sigmoid form
and the parameters are large enough, the disturbed network with implementation errors can
operate well. Matlab simulation results reveal that neural network has the advantages of
effectiveness and efficiency when it’s used to solve minimal norm of the least mean square
problems.
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基于神经网络的大规模联立线性方程的实时解
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摘要: 本文研究了大规模线性方程问题的扰动Hopfield神经网络, 并给出了网络收敛的判别准则. 在

一定条件下, 网络的稳态误差一致有界或者收敛于0, 网络具有较好的鲁棒性. 最后数值仿真验证了方法的有

效性.
关键词: 大规模联立线性方程; 扰动梯度神经网络; 系统的鲁棒性
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