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1 Introduction

We consider a kernel-based online quantile regression problem when the sampling pro-
cess is unbounded. Let X be an input space, Y = R be an output space and denote
Z = X × Y . Learning algorithm is based on samples z = {(xi, yi)}T

i=1 ∈ ZT , T is the
sample size, which are drown independently from the Borel measure ρ. In previous research,
a lot of work was done when the learning scheme is involved with the least square loss
φl(u) = u2, u ∈ R. The corresponding target function is the regression function fρ : X → Y

by

fρ(x) =
∫

Y

ydρx(y), x ∈ X,

where ρx(·) is the conditional distribution of ρ at each x ∈ X. However, algorithms with the
least square will lose robustness if the distribution of the noise has heavy tail or abnormal
variance. In 1964, Huber proposed the least modulus method instead of the least square,
which weakened the noise condition. For sparsity, Vapnik [5] combined the least modulus
method with the threshold value and introduced the ε-insensitive loss φε(u) = (|u|−ε)+, u ∈
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R. It is a special case of the pinball loss φτ (u) : R → R+ with ε = 0,

φτ (u) =

{
(1− τ)u, if u > 0,

−τu, if u ≤ 0.

Then the approximation target is a quantile regression function fρ,τ (x), which is the τ -
quantile of the conditional distribution ρx at each x ∈ X. Here a τ -quantile of ρx means that
there exists a value W ∈ R satisfying

ρx({y ∈ Y : y ≤ W}) ≥ τ, ρx({y ∈ Y : y ≥ W}) ≤ 1− τ.

Steinwart and Christmann [1] conducted the error analysis of pinball loss under some noise
condition. Furthermore, Xiang et al. [2] investigated the learning ability of ε-insensitive
pinball loss

φε
τ (u) =





(1− τ)(u− ε), if u > ε,

−τ(u + ε), if u ≤ −ε,

0, otherwise

in regularization schemes for sparsity and robustness.
In this paper, we shall associate pinball loss with the online algorithm in the reproducing

kernel Hilbert space HK . Define a Mercer kernel K : X × X → R, which is continuous,
symmetric and semi-definite, HK is the completion of linear span of the function set {Kx =
K(x, ·), x ∈ X} with the inner product 〈·, ·〉K satisfying 〈Kx,Ky〉K = K(x, y). Here we
consider the varying pinball loss φ(t)(u) = φτt

(u), where the quantile parameter τt changes
with the learning time t and converges to the quantity τ as t goes to infinity. One point of
the paper is to observe the role of τ in the following algorithm.

Definition 1 The online quantile regression algorithm is defined by f1 = 0 and

ft+1 = ft − ηt

{
(φ(t))′−(ft(xt)− yt)Kxt

+ λtft

}
, t = 1, 2, · · · , (1.1)

where λt > 0 is a regularization parameter, ηt > 0 is a step size and (φ(t))′− is the left
(one-side) derivative of φ(t). From the formula of φ(t), we see that the learning sequence ft

with the varying quantile can be expressed as

ft+1 =

{
(1− λtηt)ft − (1− τt)ηtKxt

, if ft(xt)− yt > 0,

(1− λtηt)ft + τtηtKxt
, if ft(xt)− yt ≤ 0.

In error analysis, the parameters λt, ηt are adapted to accelerate the learning rate. The
second point of our paper is to abandon the boundness of the output value y. Following the
framework of [3], the moment hypothesis is exploited.

Moment Hypothesis There exists constants M ≥ 1 and C > 0 such that
∫

Y

|y|ldρx ≤ Cl!M l, ∀l ∈ N, x ∈ X.
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From the above, one can find that it’s a generalization of boundness assumption. The main
purpose of this paper is to state the error bound ‖fT+1 − fρ,τ‖, where the learning time T

is large enough.

2 Main Result and Error Analysis

From the quantile regression problem, we can estimate the learning performance {ft}
defined in (1.1) by the excess generalization error ε(ft) − ε(fρ,τ ). Here the generalization
error ε(f) with a function f : X → Y and the pinball loss φτ (u) is defined by

ε(f) =
∫

Z

φτ (u)(f(x)− y)dρ.

In the following, we denote the generalization error ε(t)(f) with the varying τt as

ε(t)(f) =
∫

Z

φτt
(u)(f(x)− y)dρ.

The relation between the excess generalization error ε(f) − ε(fρ,τ ) and the error bound
‖f − fρ,τ‖Lr

ρX
is explained by the following comparison theorem, which was given in [1].

Definition 2 Let 0 < ϕ ≤ ∞ and ξ > 1. Denote r = ϕξ/(ϕ + 1) > 0. We say that
ρ has a τ -quantile of ϕ-average type ξ if there exist two positive functions ωτ and bτ on X

such that {bτωξ−1
τ }−1 ∈ Lϕ

ρX
and for any x ∈ X and ω ∈ (0, ωτ (x)], there hold

ρX({y : fρ,τ (x) < y < fρ,τ (x) + ω}) ≥ bτ (x)ωξ−1

and
ρX({y : fρ,τ (x)− ω < y < fρ,τ (x)}) ≥ bτ (x)ωξ−1.

In our analysis we shall make use of the following comparison theorem.
Lemma 1 Let 0 < ϕ ≤ ∞ and ξ > 1. Denote r = ϕξ/(ϕ + 1) > 0. If the measure ρ

has a τ -quantile of ϕ-average type ξ, then for any measurable function f on X, we have

‖f − fρ,τ‖Lr
ρX
≤ 21−1/ξξ1/ξ‖{bτωξ−1

τ }−1‖1/ξ

Lϕ
ρX

{ε(f)− ε(fρ,τ )}1/ξ. (2.1)

For the error analysis, we need the approximate error D(λ) with (p,K, τ) is defined by

D(λ) = inf
f∈HK

{ε(f)− ε(fρ,τ ) +
λ

2
‖f‖2

K}, λ > 0. (2.2)

A minimization fλ of (2.2) is called the regularization function. Throughout the paper, we
assume that the error bound of D(λ) satisfies

D(λ) ≤ D0λ
γ ,∀ λ > 0 (2.3)

with the constant D0 > 0 and the index power 0 < γ ≤ 1. Now we can present our main
theorem.
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Theorem 1 Assume the measure ρ has a τ -quantile of ϕ-average type ξ and the
approximate error (2.3) holds. Take the parameters ηt, λt as the form

ηt = η1t
−α, λt = λ1t

−β, η1, λ1 > 0

with

0 < β <
2

5− γ
, β < α <

2− 3β + βγ

2
. (2.4)

Then we get
Ez1,···,zT

‖fT+1 − fρ,τ‖Lr
ρX

= O(T−Λ), (2.5)

where Λ is given by

Λ = min{βγ

ξ
,
α− β

2ξ
,
2 + βγ − 3β − 2α

2ξ
} > 0.

3 Proof of Main Theorem

We are in a position to present the key analysis in our study. We shall consider the
sample error ‖fT+1 − fλT

‖K .
Lemma 2 Define the squence ft by (1.1). Let the parameters ηt, λt be the same form

in Theorem 1 and the error bound (2.3) holds. Then

Ez1,··· ,zT
‖fT+1 − fλT

‖2
K ≤ C

′
T−θ∗ , (3.1)

where θ∗ = min{α− β, 2 + βγ − 3β − 2α} and C
′
is a constant independent of T .

Proof By induction, we assume that ‖ft‖K ≤ κ
λt

, t ∈ N and 0 < τt < 1, t ∈ N . From
the definition of ft, we see that

‖ft+1‖K ≤ (1− λtηt)‖ft‖K + ηtκ ≤ (1− λtηt)
κ

λt

+ ηtκ =
κ

λt

≤ κ

λt+1

.

Denote Bt = (φ(t))′−(ft(xt)−yt)Kxt
+λtft. Then ‖Bt‖K ≤ 2κ by the fact that ‖(φ(t))′−‖∞ ≤ 1.

From definition (1.1), we see by inner products that

‖ft+1 − fλt
‖2

K = ‖ft − fλt
‖2

K + 2ηt〈fλt
− ft, Bt〉K + η2

t ‖Bt‖2
K . (3.2)

For the second term, the reproducing property and the convexity of the loss function φt tell
us that

〈f
t
− ft, Bt〉K = (φ(t))′−(ft(xt)− yt) {fλt

(xt)− ft(xt)}+ λt〈fλt
− ft, ft〉K

≤ φ(t) (fλt
(xt)− yt)− φ(t) (ft(xt)− yt) + λt〈fλt

− ft, ft〉K
≤ φ(t) (fλt

(xt)− yt)− φ(t) (ft(xt)− yt) +
λt

2
‖fλt

‖2
K − λt

2
‖ft‖2

K .
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Thus, taking expectation with respect to zt, we find

Ezt
〈f

t
− ft, Bt〉K ≤ [E (t)(fλt

) +
λt

2
‖fλt

‖2
K

]− [E (t)(ft) +
λt

2
‖ft‖2

K

]

≤ −λt

2
‖ft − fλt

‖2
K .

Therefore, together with the bound for Bt and (3.2), we have

Ezt
‖ft+1 − fλt

‖2
K ≤ (1− λtηt)‖ft − fλt

‖2
K + 4κ2η2

t . (3.3)

We decompose ‖ft − fλt
‖K as ‖ft − fλt−1‖K and the drift error dt = ‖fλt−1 − fλt

‖K . On one
hand,

dt ≤ 1
2
(
λt−1

λt

− 1)(‖fλt
‖K + ‖fλt−1‖K)

by the lemma in [4]. Noting the fact that ‖fλ‖K ≤
√

D(λ)
λ

for each λ > 0. Then dt ≤
d0t

−(1− β
2 + βγ

2 ), where d0 = β2β+1
√

2D0λ
γ
1/λ1. Using the elementary inequality 2ab ≤

Aa2bq + b2−q/A with 0 < q < 2, A > 0 to the case of a = ‖ft − fλt−1‖K , b = dt, we
obtain

‖ft − fλt
‖2

K ≤ ‖ft − fλt−1‖2
K + A‖ft − fλt−1‖2

Kdq
t + d2−q

t /A + d2
t .

By the above estimats, we get

Ezt
‖ft+1 − fλt

‖2
K ≤ (1 + Adq

t − λtηt)‖ft − fλt−1‖2
K +

d2−q
t

A
+ d2

t + 4κ2η2
t .

We take the constant A =
1
2 η1λ1

dq
1

and q = α+β

1− β
2 + βγ

2
, the restriction of the index power α, β

implies that

Ezt
‖ft+1 − fλt

‖2
K ≤

(
1− η1λ1

2
t−α−β

)
‖ft − fλt−1‖2

K + Ct−θ, (3.4)

where θ = min{2 + βγ − 2β − α, 2α} and C = d2−q
0 /A + d2

0 + 4κ2η2
1 > 0.

Applying relation (3.4) iteratively for t = 1, · · · , T, we have that

Ez1,··· ,zT
‖fT+1 − fλT

‖2
K ≤ C

T∑
t=1

T∏
j=t−1

(
1− η1λ1

2
j−α−β

)
t−θ. (3.5)

Applying the following elementary inequality [4] with 0 < a1 < 1, c, a2 > 0 and t ∈ N,

t−1∑
i=1

i−a2 exp

{
−c

t∑
j=i+1

j−a1

}
≤

{
2a1+a2

c
+

(
1 + a2

ec(1− 2a1−1)

)(1+a2)/(1+a1)
}

ta1−a2

to the case of a1 = α + β < 1, a2 = θ and c = η1λ1
2

, we get the desired result (3.1).
Proof of Theorem 1 By the decomposition in [6],

ε(fT+1)− ε(fρ,τ ) ≤ ε(fT+1)− ε(fλT
) + D(λT ).
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Since φ is uniformly continuous, then

|ε(fT+1)− ε(fλT
)| ≤ ‖fT+1 − fλT

‖∞ ≤ ‖fT+1 − fλT
‖K .

The above bound together with the comparison theorem (2.1) and Lemma 2 give our con-
clusion (2.5).
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无界意义下的在线变化分位数回归算法
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摘要: 本文研究了基于核方法下的在线变化损失函数的回归算法. 利用迭代和比较原则, 得到了算法

的收敛速度, 并将该结果推广到了更一般的输出空间.
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MR(2010)主题分类号: 60G15; 62H05 中图分类号: O211.6


