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Abstract: In this paper, we study the upper bound for the the r-strong edge chromatic num-
ber of regular graph. By probability method, we prove that if 3 < A < 730, then x's(G,2) < 2A+1
by the general local lemma, which extends some corresponding results in [11, 12].
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1 Introduction

Graph coloring is one of the chief topics in graph research. The graph coloring was
applied to chemistry, biology, VLSI, etc., see [1, 2], It is well known to compute the chromatic
number of graphs is NP-Hard in graphs theory. In the past, the people had some results
about it by combination methods, see [3, 4, 5, 6, 7]. In 1974, Edrés proved r(k, k) > 2%
by probability. At ICM2002, Noga Alon had a report about the method and challenge
of Discrete mathematics. The viewpoint that the problem of graph coloring studied by
probability drew the field of graph attention. For instance, some conclusions was gotten by
probability methods. In [8], Alon proved that o/ (G) < A+ 2 for any graph whose girth is at
least 2000A log A, where A is maximum degree of G. In [9], Rahul Muthu et al. improved
the result of [8]. In [10], Hamed Hatami proved that if A > 10%°, then y,.,(G) < A + 300,
where A(G) is maximum degree of G. In 2006, Zhang Zhongfu and Akbaria presented the
concept of the r-strong edge coloring independently, see [11, 12]. When r = 2, the r-strong
edge-chromatic number is denoted by x’s(G,2). Let A be the maximum degree of G. In
this paper, we study the upper bound for the the r-strong edge chromatic number of regular
graph by probability method, prove that if 3 < A < 730, then X'4(G,2) < 2A + 1 by
the general local lemma. All the graphs G = G(V, E) discussed in this paper are finite,

undirected, simple and connected.
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2 Main Results

Definition 2.1 A proper edge coloring of a graph G is a map f : E(G) — C, where
C is a set of colors such that no two edges with the same colors are incident with the same
vertex, see[3].

Definition 2.2 For a graph G(V, E), if a proper k-edge coloring f is satisfied with
S(u) # S(v) for uv € E(G), where S(u) = {f(uv)luv € E}, then f is called k-adjacent
Vertex-distinguishing edge coloring of G, is abbreviated k-ASEC, and

X'as(G) = min{k|k—ASEC of G}

is called the adjacent Vertex-distinguishing edge chromatic number of G, see [4].

Definition 2.3 For any u,v € V(G),d(u,v) denotes the distance between u and v
and N(v) denotes the set of all vertices adjacent to vertex v. A proper edge coloring of
a graph G is called an r-strong edge coloring if for any two distinct vertices u,v € V(G)
with d(u,v) <r, we have S(u) # S(v). The r-strong edge coloring number x’s(G,r) is the
minimum number of colors required for an r-strong edge coloring of the graph G, see [11,
12.

Obviously, x's(G,1) = x'aswhen r = 1, ¥'s(G,r) = x’s when r > Diam(G), where
diam(G) is the diameter of the graph.

Definition 2.4 Let A;, As,..., A, be events in an arbitrary probability space. A
directed graph D = (V, E) on the set of vertices V= {1,2,--- ,n} is called a dependency
digraph for the events A, As,--- , A, if for each 7,1 < i < n, the event A; is mutually
independent of all the events {A; : (i, j)EE}, see [13, 14].

Lemma 2.2 (the general local lemma) Consider aset ¢ = {A, As, ..., A, } of (typically
bad) events such that each A; is mutually independent of ¢ — (D; U A;) for some D; C e. If
there exist x1, za,...,x, € [0,1] such that for each 1 < i < n,

Pr(A;) <z H (1—x;),

Aj eD;

then the probability that none of the events in € occurs is at least

n

i=1
see [13, 14]
Theorem 2.3 If G(V, E) has 2 < A <730, then x,(G,2) <2A +1.
Proof By Vizing theorem, it is possible to color all edges of G by A+1 colors properly,

so we have proper edge coloring fy. And then each of edges in G is recolored randomly and

1
3
2

independently with an equal probability to one of A new colors, name this edge
coloring of G as g. We will use Lemma 1 to show that a positive probability, g is 2-strong

edge coloring. In order to show that, the following conditions should be satisfied:
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[1] The coloring is proper-no pair of adjacent edges are colored with the same color;

[2] The coloring is adjacent-vertex-distinguishing-no pair of adjacent vertices meet the

same color set;
[3] No pair of vertices whose distance is 2 meet the same color set.
Step 1 The following bad events are defined in order to satisfy above:

(1) For each pair of adjacent edges e, f, let A, ; be the event that both e and f are
colored with the same color;

(2) For each edge e = ww, such that deg(u) = deg(w), let B, be the set of all edges
which are connected u or w, then Ep,_ be the event that the edges which are adjacent to u

and w are colored properly, and S(u) = S(w);

(3) For each path whose length is 2, P,, = uew fv, @such that deg(u) =deg(v), let
P,, be the set of all edges which are incident with uw or v, then FEp, is the event that the

edgs which are incident with u and v are colored properly, and S(u) = S(v).

It remains to show that with positive probability none of these events happen, then G
has a 2 -strong edge-coloring. To prove this we apply the local lemma. Let us construct
dependency graph H whose nodes are all the events of two nodes Ex and Fy (where each
of X and Y is either a pair of incident edges, or the set of all edges that are adjacent to an
edge together with that edge itself, or the set of all edges incident to two vertices u and v
which distance is 2) are adjacent if and only if X and Y contain at least one common edge.
Since the occurrence of each event Ex depends only on the edges of X, H is dependency
graph for our events. In order to apply the general local lemma, we need estimates for the
probability of each event and the number of nodes of each type in H which are adjacent to

any give node. These estimates are given in the two steps below.

Step 2 Estimate the probability of each event: If A, ; occurs, then e, f in A, ; are

recolored with the same color. So

A 1 1

peen) = [(4) Gaar® + (2) Gear” -+ (a2 ) (e

< (D)4 (3) e (W2 ) riemr
A 1 A2 1
< [2 (W> ] = (64A9)5"

Let e = uv,deg(u) = deg(v) = A, if Ep_ occurs, then edges in B, are colored properly
and S(u) = S(v), namely, S(u)—{f(e)} = S(w)—{f(e)} = S. Assume S is a fixed set which

has ¢ member of the new colors and A — ¢ members of the old colors. With probability
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(1- éA) preserves its previous color. This event happens with the probability of

1 1 1

. —i 12 . 8 . 72
10— 381 (o) < el 3~ g5y
= e ) (LA = (oS eg(-16)

A 2 exp(L8)
Pr(Be) <Y (?) (?) (CDE) ) o160
A -2 16
< Z(ééz eXp(K)

PR W)iexp(—m) < exp(—16).

1=0

Step 3 Estimate the dependency events number, in the following table:

AG,f .EBF EPUU
Ao s AA -5 3A — 2 A(A —1) 4+ 2(A - 1)
Ep, (2A — 1)(2A — 2) (2A—2)A+1  (2A—1)A(A—1)

Ep

uv

2A2A —1)+142(A-2) 2A2+A -2 2(A—-1P+A(A-1)

For the dependency events numbers in the table, we have some explanations. For each
event A, ; of Type (1), the corresponding vertex of A, ; in H is adjacent to at most 4A —5
events of type (1). This is because that each edge e and f is adjacent to at most 2A — 2
(except for e itself) edge, there are two edge e and f in event of type (1), e, f are adjacent
to at most 2 - (2A — 2) = 4A — 4, the edge adjacent to e (or f) contains f (or e), the set
{e, f} is compute twice, so the result is 2- (2A —2) —1 = 4A — 5. For each event A, ; of type
(2), the corresponding vertex of A, ; in H is adjacent to at most 3A — 2 events of type (2).
This is because that each vertex is adjacent to at most A vertices, there are three vertices
in type (2), except the common vertex u of e and f, another terminate vertex u; of e and
another terminate vertex us of f are compute twice, so the result is 3- A —2 =3A — 2. The

others can be explained similarly.

2 1 2

Step 4 Find the real constant 2;(0 < x; < 1) for applying Lemma 3. Let {5252, ga2> GIAT)A

be the constants associated with events of types (1), (2), (3).
Step 5 Conclude that with positive probability no events of type (1), (2), (3), provided
that

1 2 2 2 2 1
< 1— 4A—-5 1— A(A-1)+2(A-1) 1— 3A—-2 2.1
162A2 — 162A2 ( 162A2) ( (64A3)A) ( 8A2) ’ (2.1)
1 2 1 2
_1 < 1 _ (2A71)(2A72) 1 _ (2A72)A+1 1 _ (2A71)A(A71)
exp(=16) < 75 (1~ Jgaa2) (1= 5a2) ( (64A3)A) ’
(2.2)
1 2 2 1 2
< 1— 28(2A-1)+142(A=2) (1 _ 2A+A-2
(64A3)2 — (64A3)A ( 162A2) ( 8A2)
(1— 2 )2(A71)3+A(A71)' (2.3)

(64A3)A
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Now since (1 — %)Z > i, to prove (2.1), it suffices to prove the following inequality:

1 1 _ 3A-2 | 4[A(A-1)+2(A-1)?]
5 S ()T T s (2.14)

In order to proof (2.1x), it is only to prove

Lo (A-5) 3A-2 4A-1)3A-2)

2.1
= T6aAT T 4A? 64A3)5 (21 xx)

when A > 2, inequality (2.1 % %) is true, thus the inequality is hold (2.1), in order to prove
(2.2), it is only need to prove

“4(2A —1)(2A — 2)

exp(—16) < exp(—In(8A?)) exp( TN )
—2[(2A — 2)A + 1] —4(2A — 1)A(A - 1) (2.24)
exp( SAZ ) exp( (6IA%) ),

in order to prove (2x), it is only need to prove

oo —42A —1(2A—2)  —2[2A - 2A+1]  —4(2A — 1)A(A — 1)
—16 < —In(8A7) — 162A2 - 8A? - (64A3)2 ’

(2.2 % %)

when A < 730, inequality (2.2 % *) is true, thus inequality (2.2) is hold.
Now since (1 — %)Z > i, to prove (2.3), it suffices to prove the following inequality.
In order to prove (2.3), it is only need to prove

1. (a2

1
— < (=) 162a

4(A=1)(242-_3A+2)

(61a5)58 . (2.3%)

3) , 2A24A—2
> +=xz —+

In order to prove (2.3x), it is only need to prove

(4A% —3) N 2024+ A -2  4(A-1)(2A? —3A +2)
~ 162A2 4A2 (64A3)A ’

(2.3 % %)

when A > 2, inequality (2.3 * *)is true, thus inequality (2.3) is hold.
Above all, G has 2A + 1 — x's(G,2). This complete the proof
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