
Vol. 34 ( 2014 )
No. 2

数 学 杂 志
J. of Math. (PRC)

THE HERMITIAN R-SYMMETRIC EXTREMAL RANK

SOLUTIONS OF A MATRIX EQUATION

FU Ying
(Department of Basic, Dongguan Polytechnic, Dongguan 523808, China)

Abstract: The Hermitian R-symmetric maximal and minimal rank solutions to the matrix

equation AX = B and their optimal approximation are considered. By applying the matrix rank

method, the necessary and sufficient conditions for the existence of the maximal and minimal

rank solutions with hermitian R-symmetric to the equation is obtained . The expressions of such

solutions to this equation are also given when the solvability conditions are satisfied. In addition,

corresponding minimal rank solution set to the equation and the explicit expression of the nearest

matrix to a given matrix in the Frobenius norm are provided.
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1 Introduction

Throughout this paper, let Cn×m be the set of all n×m complex matrices, Hn×n denote
the class of n×n Hermitian matrices, Un×n be the set of all n×n unitary matrices. Denote by
In the identity matrix with order n. Let J = (en, en−1, · · · , e1), where ei is the ith column of
In. For matrix A, A∗, A+, ‖A‖F and r(A) represent its conjugate transpose, Moore-Penrose
inverse, Frobenius norm and rank, respectively. For a matrix A, the two matrices LA and
RA stand for the two orthogonal projectors LA = I −A+A, RA = I −AA+ induced by A.

Definition 1 Let R ∈ Cn×n be a nontrivial unitary involution, i.e., R = R∗ = R−1 6=
In. We say that A ∈ Cn×n is a Hermitian R-symmetric matrix, if A∗ = A,RAR = A. We
denoted by HRSn×n the set of all n× n Hermitian R-symmetric matrices.

In matrix theory and applications, many problems are closely related to the ranks of
some matrix expressions with variable entries, and so it is necessary to explicitly characterize
the possible ranks of the matrix expressions concerned. The study on the possible ranks of
matrix equations can be traced back to the late 1970s (see, e.g. [1–3]). Recently, the
extremal ranks, i.e., maximal and minimal ranks, of some matrix expressions have found
many applications in control theory [4, 5], statistics, and economics (see, e.g. [6, 7]).
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In this paper, we consider the Hermitian R-symmetric extremal rank solutions of the
matrix equation

AX = B, (1.1)

where X and B are given matrices in Cn×m.
We also consider the matrix nearness problem

min
A∈Sm

∥∥A− Ã
∥∥

F
, (1.2)

where Ã is a given matrix in Cn×m and Sm is the minimal rank solution set of eq. (1.1).

2 Some Lemmas

We first know that Hermitian R-symmetric matrices have the following properties.
Since R = R∗ = R−1 6= In, the only possible eigenvalues of R are +1 and −1. Let r

and s be respectively the dimensions of the eigenspaces of R associated with the eigenvalues
λ = 1, and λ = −1; thus r, s > 1 and r + s = n. Let

P = [p1 · · · pr] and Q = [q1 · · · qs] , (2.1)

where {p1, . . . , pr} and {q1, . . . , qs} are orthonormal bases for the eigenspaces. P and Q

can be found by applying the Gram-Schmidt process to the columns of I + R and I − R,
respectively.

Lemma 1 [8] A ∈ Cn×n is Hermitian and R-symmetric if and only if

A =
[

P Q
] [

AP 0
0 AQ

][
P ∗

Q∗

]
(2.2)

with AP = P ∗AP ∈ Hr×r, AQ = Q∗AQ ∈ Hs×s.
Given matrix X1, B1 ∈ Cn×m, the singular value decomposition of X1 be

X1 = U1

[
Σ1 0
0 0

]
V ∗

1 = U11Σ1V
∗
11, (2.3)

where U1 = [U11, U12] ∈ Un×n, U11 ∈ Cn×r1 , V1 = [V11, V12] ∈ Um×m, V11 ∈ Cm×r1 , r1 =
r(X1), Σ1 = diag(σ1, . . . , σr1), σ1 ≥ · · · ≥ σr1 > 0.

Let A11 = U∗
11B1V11Σ−1

1 , A12 = U∗
12B1V11Σ−1

1 , G1 = A12LA11 , the singular value decom-
position of G1 be

G1 = P1

[
Γ1 0
0 0

]
Q∗

1 = P11Γ1Q
∗
11, (2.4)

where P1 = [P11, P12] ∈ U(n−r1)×(n−r1), P11 ∈ C(n−r1)×s1 , Q1 = [Q11, Q12] ∈ Ur1×r1 , Q11 ∈
Cr1×s1 , s1 = r(G1), Γ1 = diag(γ1, . . . , γs1), γ1 ≥ · · · ≥ γs1 > 0.
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Lemma 2 [9] Given matrices X1, B1 ∈ Cn×m. Let the singular value decompositions of
X1 and G1 be (2.3), (2.4), respectively. Then the matrix equation A1X1 = B1 has a solution
A1 in Hn×n if and only if

X∗
1B1 = B∗

1X1, B1X
+
1 X1 = B1. (2.5)

In this case, let Ω1 be the set of all Hermitian solutions of equation A1X1 = B1, then
the extreme ranks of A1 are as follows:

(1) The maximal rank of A1 is

max
A1∈Ω1

r(A1) = n + r(B1)− r(X1). (2.6)

The general expression of A1 satisfying (2.6) is

A1 = A0 + U12N1U
∗
12 (2.7)

where A0 = B1X
+
1 + (B1X

+
1 )+RX1 + RX1B1X

+
1 (X1X

+
1 B1X

+
1 )+(B1X

+
1 )∗RX1 and N1 ∈

H(n−r1)×(n−r1) is chosen such that r(RG1N1RG1) = n + r(X∗
1B1)− r(B1)− r(X1).

(2) The minimal rank of A1 is

min
A1∈Ω1

r(A1) = 2r(B1)− r(X∗
1B1). (2.8)

The general expression of A1 satisfying (2.8) is

A1 = A0 + U12P11P
∗
11M1P11P

∗
11U

∗
12 (2.9)

where A0 = B1X
+
1 + (B1X

+
1 )+RX1 + RX1B1X

+
1 (X1X

+
1 B1X

+
1 )+(B1X

+
1 )∗RX1 and M1 ∈

H(n−r1)×(n−r1) is arbitrary.

3 Hermitian and R-Symmetric Extremal Rank Solutions to AX = B

Assume P , Q with the forms of (2.1). Let
[

P ∗

Q∗

]
X =

[
X2

X3

]
,

[
P ∗

Q∗

]
B =

[
B2

B3

]
, (3.1)

where X2 ∈ Cr×m, X3 ∈ Cs×m, B2 ∈ Cr×m, B3 ∈ Cs×m, and the singular value decomposi-
tion of matrices X2, X3 are, respectively,

X2 = U2

[
Σ2 0
0 0

]
V ∗

2 = U21Σ2V
∗
21, (3.2)

where U2 = [U21, U22] ∈ Ur×r, U21 ∈ Cr×r2 , V2 = [V21, V22] ∈ Um×m, V21 ∈ Cm×r2 , r2 =
r(X2), Σ2 = diag(α1, . . . , αr2), α1 ≥ · · · ≥ αr2 > 0,

X3 = U3

[
Σ3 0
0 0

]
V T

3 = U31Σ3V
T
31, (3.3)
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where U3 = [U31, U32] ∈ Us×s, U31 ∈ Cs×r3 , V3 = [V31, V32] ∈ Um×m, V31 ∈ Cm×r3 , r3 =
r(X3), Σ3 = diag(β1, · · · , βr3), β1 ≥ · · · ≥ βr3 > 0.

Let A21 = U∗
21B2V21Σ−1

2 , A22 = U∗
22B2V21Σ−1

2 , G2 = A22LA21 , A31 = U∗
31B3V31Σ−1

3 ,
A32 = U∗

32B3V31Σ−1
3 , G3 = A32LA31 , the singular value decomposition of matrices G2, G3

are, respectively,

G2 = P2

[
Γ2 0
0 0

]
Q∗

2 = P21Γ2Q
∗
21, (3.4)

where P2 = [P21, P22] ∈ U(r−r2)×(r−r2), P21 ∈ C(r−r2)×s2 , Q2 = [Q21, Q22] ∈ Ur2×r2 , Q21 ∈
Cr2×s2 , s2 = r(G2), Γ2 = diag(ζ1, . . . , ζs2), ζ1 ≥ · · · ≥ ζs2 > 0.

G3 = P3

[
Γ3 0
0 0

]
Q∗

3 = P31Γ3Q
∗
31, (3.5)

where P3 = [P31, P32] ∈ U(s−r3)×(s−r3), P31 ∈ C(s−r3)×s3 , Q3 = [Q31, Q32] ∈ Ur3×r3 , Q31 ∈
Cr3×s3 , s3 = r(G3), Γ3 = diag(ξ1, · · · , ξs3), ξ1 ≥ · · · ≥ ξs3 > 0.

Now we can establish the existence theorems as follows.
Theorem 1 Let X, B ∈ Cn×m be known. Suppose P , Q with the forms of (2.1),[

P ∗

Q∗

]
X,

[
P ∗

Q∗

]
B have the partition forms of (3.1), and the singular value decompositions

of the matrices X2, X3 and G2, G3 are given by (3.2), (3.3) and (3.4), (3.5), respectively.
Then equation (1.1) has a solution A ∈ HRSn×n if and only if

X∗
2B2 = B∗

2X2, B2X
+
2 X2 = B2, X∗

3B3 = B∗
3X3, B3X

+
3 X3 = B3. (3.6)

In this case, let Ω be the set of all Hermitian R-symmetric solutions of equation (1.1),
then the extreme ranks of A are as follows:

(1) The maximal rank of A is

max
A∈Ω

r(A) = n + r(B2) + r(B3)− r(X2)− r(X3). (3.7)

The general expression of A satisfying (3.7) is

A =
[

P Q
] [

A2 + U22N2U
∗
22 0

0 A3 + U32N3U
∗
32

][
P ∗

Q∗

]
, (3.8)

where
Ai = BiX

+
i + (BiX

+
i )+RXi

+ RXi
BiX

+
i (XiX

+
i BiX

+
i )+(BiX

+
i )∗RXi

,

i = 2, 3 and N2 ∈ H(r−r2)×(r−r2), N3 ∈ H(s−r3)×(s−r3) are chosen such that

r(RG2N2RG2) = r + r(X∗
2B2)− r(B2)− r(X2),

r(RG3N3RG3) = s + r(X∗
3B3)− r(B3)− r(X3).
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(2) The minimal rank of A is

min
A∈Ω

r(A) = 2r(B2) + 2r(B3)− r(X∗
2B2)− r(X∗

3B3). (3.9)

The general expression of A satisfying (3.9) is

A = [P Q]

[
A2 + U22P21P

T
21M2P21P

T
21U

T
22 0

0 A3 + U32P31P
T
31M3P31P

T
31U

T
32

][
P ∗

Q∗

]
,

(3.10)

where Ai = BiX
+
i + (BiX

+
i )+RXi

+ RXi
BiX

+
i (XiX

+
i BiX

+
i )+(BiX

+
i )∗RXi

, i = 2, 3, and
M2 ∈ H(r−r2)×(r−r2), M3 ∈ H(s−r3)×(s−r3) are arbitrary.

Proof Suppose the matrix equation (1.1) has a solution A which is Hermitian R-
symmetric, then it follows from Lemma 1 that there exist AP ∈ Hr×r, AQ ∈ Hs×s satisfying

A =
[

P Q
] [

AP 0
0 AQ

][
P ∗

Q∗

]
and AX = B. (3.11)

By (3.1), that is
[

AP 0
0 AQ

][
X2

X3

]
=

[
B2

B3

]
, (3.12)

i.e.,

AP X2 = B2, AQX3 = B3. (3.13)

Therefore by Lemma 2, (3.6) hold, and in this case, let Ω be the set of all Hermitian R-
symmetric solutions of equation (1.1), we have

(1) By (3.1),

max
A∈Ω

r(A) = max
AP X2=B2
A∗P =A2

r(AP ) + max
AQX3=B3
A∗Q=A3

r(AQ). (3.14)

By Lemma 2,

max
AP X2=B2
A∗P =A2

r(AP ) = r + r(B2)− r(X2) (3.15)

and

max
AQX3=B3
A∗Q=A3

r(AQ) = s + r(B3)− r(X3). (3.16)

Taking (3.15) and (3.16) into (3.14) yields (3.7).
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According to the general expression of the solution in Lemma 2, it is easy to verify the
rest of part in (1).

(2) The proof is very similar to that of (1) By (3.1) and Lemma 2, so we omit it.

4 The Expression of the Optimal Approximation Solution to the Set of

the Minimal Rank Solution

From (3.10), when the solution set Sm = {A | AX = B,A ∈ HRSn×n, r(A) = min
Y ∈Ω

r(Y )}
is nonempty, it is easy to verify that Sm is a closed convex set, therefore there exists a unique
solution Â to the matrix nearness problem (1.2).

Theorem 2 Given matrix Ã, and the other given notations and conditions are the
same as in Theorem 1. Let

[
P ∗

Q∗

]
Ã

[
P Q

]
=

[
Ã11 Ã12

Ã21 Ã22

]
, Ã11 ∈ Cr×r, Ã22 ∈ Cs×s, (3.1)

and we denote

U∗
2 (Ã11 −A2)U2 =

[
B̃11 B̃12

B̃21 B̃22

]
, B̃11 ∈ Cr2×r2 , B̃22 ∈ C(r−r2)×(r−r2), (3.2)

U∗
3 (Ã22 −A3)U3 =

[
C̃11 C̃12

C̃21 C̃22

]
, C̃11 ∈ Cr3×r3 , C̃22 ∈ C(s−r3)×(s−r3). (3.3)

If Sm is nonempty, then problem (1.2) has a unique Â which can be represented as

Â = [P Q]

[
A2 + U22P21P

∗
21B̃22P21P

∗
21U

∗
22 0

0 A3 + U32P31P
∗
31C̃22P31P

∗
31U

∗
32

][
P ∗

Q∗

]
,(3.4)

where B̃22, C̃22 are the same as in (3.2), (3.3).
Proof When Sm is nonempty, it is easy to verify from (3.10) that Sm is a closed

convex set. Problem (1.2) has a unique solution Â. By Theorem 1, for any A ∈ Sm, A can
be expressed as

A = [P Q]

[
A2 + U22P21P

∗
21M2P21P

∗
21U

∗
22 0

0 A3 + U32P31P
∗
31M3P31P

∗
31U

∗
32

][
P ∗

Q∗

]
, (3.5)

where
Ai = BiX

+
i + (BiX

+
i )+RXi

+ RXi
BiX

+
i (XiX

+
i BiX

+
i )+(BiX

+
i )∗RXi

,

i = 2, 3, and M2 ∈ H(k−r2)×(r−r2), M3 ∈ H(s−r3)×(s−r3) are arbitrary.
Using the invariance of the Frobenius norm under unitary transformations, and

P21P
∗
21 + P22P

∗
22 = I, P31P

∗
31 + P32P

∗
32 = I,
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where P21P
∗
21, P22P

∗
22, P31P

∗
31, P32P

∗
32 are unitary projection matrices, and

P21P
∗
21P22P

∗
22 = 0, P31P

∗
31P32P

∗
32 = 0,

we have

‖Ã−A‖2
F =

∥∥Ã11 −A2 − U22P21P
∗
21M2P21P

∗
21U

T
22

∥∥2

F
+

∥∥Ã12

∥∥2

F

+
∥∥Ã22 −A3 − U32P31P

∗
31M3P31P

∗
31U

∗
32

∥∥2

F
+

∥∥Ã21

∥∥2

F

=

∥∥∥∥∥U∗
2 (Ã11 −A2)U2 −

[
0 0
0 P21P

∗
21M2P21P

∗
21

]∥∥∥∥∥

2

F

+
∥∥Ã12

∥∥2

F

+

∥∥∥∥∥U∗
3 (Ã22 −A3)U3 −

[
0 0
0 P31P

∗
31M3P31P

∗
31

]∥∥∥∥∥

2

F

+
∥∥Ã21

∥∥2

F

=
∥∥Ã12

∥∥2

F
+

∥∥Ã21

∥∥2

F
+

∥∥B̃11

∥∥2

F
+

∥∥B̃12

∥∥2

F
+

∥∥B̃21

∥∥2

F
+

∥∥C̃11

∥∥2

F

+
∥∥C̃12

∥∥2

F
+

∥∥B̃22P22P
∗
22

∥∥2

F
+

∥∥P22P
∗
22B̃22P21P

∗
21

∥∥2

F

+
∥∥P21P

∗
21B̃22P21P

∗
21 − P21P

∗
21M2P21P

∗
21

∥∥2

F

+
∥∥C̃21

∥∥2

F
+

∥∥C̃22P32P
∗
32

∥∥2

F
+

∥∥P32P
∗
32C̃22P31P

∗
31

∥∥2

F

+
∥∥P31P

∗
31C̃22P31P

∗
31 − P31P

∗
31M3P31P

∗
31

∥∥2

F
.

Therefore, min
A∈Sm

‖Ã−A‖F is equivalent to

min
M2∈H(r−r2)×(r−r2)

∥∥P21P
T
21B̃22P21P

∗
21 − P21P

∗
21M2P21P

∗
21

∥∥
F

, (3.6)

min
M3∈H(s−r3)×(s−r3)

∥∥P31P
∗
31C̃22P31P

∗
31 − P31P

∗
31M3P31P

∗
31

∥∥
F

. (3.7)

Obviously, the solutions of (3.6), (3.7) can be written as

M2 = B̃22 + P22P
∗
22M̃2P22P

∗
22, ∀M̃2 ∈ H(r−r2)×(r−r2), (3.8)

M3 = C̃22 + P32P
∗
32M̃3P32P

∗
32, ∀M̃3 ∈ H(s−r3)×(s−r3). (3.9)

Substituting (3.8), (3.9) into (3.5), then we get that the unique solution to problem (1.2)
can be expressed in (3.4). The proof is completed.
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一类矩阵方程的Hermitian R-对称定秩解

付 莹

(东莞职业技术学院基础课部, 广东东莞 523808)

摘要: 本文研究了矩阵方程AX = B 的Hermitian R-对称最大秩和最小秩解问题. 利用矩阵秩的方

法, 获得了矩阵方程AX = B有最大秩和最小秩解的充分必要条件以及解的表达式, 同时对于最小秩解的解

集合, 得到了最佳逼近解.
关键词: 矩阵方程; Hermitian R-对称矩阵; 最大秩; 最小秩; 最佳逼近解

MR(2010)主题分类号: 65F15; 65F20 中图分类号: O241.6


