
Vol. 34 ( 2014 )
No. 2

数 学 杂 志
J. of Math. (PRC)

NOTES ON THE CONVERGENCE OF ORLICZ

CONVEX BODIES

LI Ze-qing 1,2, ZHU Bao-cheng 2, ZE Chun-na3

(1. School of Mathematics and Computer Science, Bijie Normal University, Bijie 551700, China)
(2. School of Mathematics and Statistics, Southwest University, Chongqing 400715, China)

(3. College of Mathematics Science, Chongqing Normal University, Chongqing 401331, China)

Abstract: In this paper, we investigate the characters of Orlicz projection body and Orlicz

centroid body. By geometric analysis, we obtain the continuities of the Orlicz projection operator

and Orlicz centroid operator.
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1 Introduction and Main Results

The classical Brunn-Minkowski theory emerged at the turn of the 19th into the 20th
century, when Minkowski began his study of the volume of the Minkowski sum of convex
bodies. In the early 1960’s, Firey (see e.g. Schneider [13]) introduced an Lp-extension
of Minkowski’s addition (now known as Firey-Minkowski Lp-addition) of convex bodies.
In the middle of 1990s, it was shown in [9,10], that a study of the volume of these Firey-
Minkowski Lp-combinations leads to an embryonic Lp-Brunn-Minkowski theory. This theory
was expanded rapidly (see e.g. [1–2, 4–6, 8–11, 14]).

The works of Haberl et al. [4–6] and the recent work of Ludwig and Reitzner [8],
made it apparent that the time is ripe for the next step in the evolution of the Brunn-
Minkowski theory towards the Orlicz-Brunn-Minkowski theory. Lutwak, Yang and Zhang
recently introduced the notions of Orlicz projection bodies and Orlicz centroid bodies. It was
shown in [11, 12] that a study of the Orlicz Petty projection inequality and Orlicz centroid
inequality leads to the Orlicz Brunn-Minkowski theory which is a natural extension of the
Lp-Brunn-Minkowski theory. Work of Haberl et al. [7] proved the even Orlicz Minkowski
problem. Lutwak, Yang and Zhang (see [12]) established the Orlicz centroid inequality for
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convex bodies and conjectured that their inequality can be extended to star bodies. In
[15], Zhu confirmed this conjecture. In [16], the reverse form of the Orlicz Busemann–Petty
centroid inequalities was obtained in the two-dimensional case.

Let φ : R → [0,∞) be an even strictly convex function such that φ(0) = 0. The class
of such a φ will be denoted by C. Let K be a convex body (i.e., a compact, convex set with
non-empty interior) in Rn that contains the origin in its interior. Denote by | K | the volume
of K. The Orlicz centroid body ΓφK of K, as defined in [12], is the convex body whose
support function at x ∈ Rn is given by

hΓφK(x) = inf{λ > 0 :
1

| K |
∫

K

φ
(x · y

λ

)
dy ≤ 1}, (1.1)

where x · y denotes the standard inner product of x and y in Rn and the integration is with
respect to Lebesgue measure in Rn.

We say that a sequence {φi}, where the φi ∈ C, is such that φi → φ0 ∈ C provided

| φi − φ0 |I := max
t∈I

| φi(t)− φ0(t) |→ 0

for every compact interval I ⊂ R.
We get the continuity of Orlicz centroid operator by the definition of the Orlicz centroid

body as follows:
Theorem 1 Suppose φi ∈ C and Kj is a star body (about the origin) in Rn. If

φi → φ ∈ C and Kj → K, then Γφi
Kj → ΓφK.

Lutwak, Yang and Zhang also established the definition of the Orlicz projection body
ΠφK of K, whose support function is given by (see [11])

hΠφK(x) = inf{λ > 0 :
∫

Sn−1

φ

(
x · u

λhK(u)

)
hK(u)dS(u) ≤ n | K |}. (1.2)

For c > 0, we have

Πφ(cK) =
1
c
ΠφK. (1.3)

We get the continuity of Orlicz projection operator by the definition of the Orlicz pro-
jection body as follows:

Theorem 2 Suppose φi ∈ C and Kj is a convex body in Rn that contains the origin
in its interior. If φi → φ ∈ C and Kj → K, then Πφi

Kj → ΠφK.

2 Preliminaries

In this section we collect some basic well-known facts that we will use in the proofs of
our main results. For references about the Brunn-Minkowski theory, see [3, 13].

Let ρ(K, ·) = ρK : Rn\{0} → [0,∞) denote the radial function of the set K ⊂ Rn,
star-shaped about the origin; i.e. ρK(x) = max{λ > 0 : λx ∈ K}. If ρK is strictly positive
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and continuous, then we call K a star body and we denote the class of star bodies (about
the origin) in Rn by Sn

0 . If c > 0, then obviously for the dilate cK = {cx : x ∈ K} we have

ρcK = cρK . (2.1)

Let h(K, ·) = hK : Rn → R denote the support function of the convex body K in Rn,
i.e., hK(x) = max{x · y : y ∈ K}, we have

hcK(x) = chK(x) and hK(cx) = chK(x). (2.2)

For φ ∈ C define φ? ∈ C by

φ?(t) =
∫ 1

0

φ(ts)dsn, (2.3)

where dsn = nsn−1ds. Obviously, φi → φ0 ∈ C implies φ?
i → φ?

0.
It will be helpful to also use the alternate definition of Orlicz centroid body (see [12]):

hΓφK(x) = inf{λ > 0 :
∫

Sn−1

φ?

(
1
λ

(x · u)ρK(u)
)

dV ∗
K(u) ≤ 1}, (2.4)

where φ? is defined by (2.3) and dV ∗
K is the volume-normalized dual conical measure of K,

defined by | K | dV ∗
K = 1

n
ρn

KdS, where dS is Lebesgue measure on Sn−1 ( i.e., (n − 1)-
dimensional Hausdorff measure). For c > 0, an immediate consequence of definitions (2.4)
and (2.1) is the fact that

ΓφcK = cΓφK. (2.5)

Lemma 2.1 (see [12]) Suppose K ∈ Sn
0 and u0 ∈ Sn−1. Then

∫

Sn−1

φ?

(
1
λ0

(u0 · v)ρK(v)
)

dV ∗
K(v) = 1

if and only if hΓφK(u0) = λ0.

Associated with each φ ∈ C is cφ ∈ (0,∞) defined by

cφ = min{c > 0 : max{φ(c), φ(−c)} ≤ 1}.

Throughout B = {x ∈ Rn : | x | ≤ 1} will denote the unit ball centered at the origin,
and ωn = | B | will denote its n-dimensional volume. We shall make use of the trivial fact
that for u0 ∈ Sn−1,

ωn−1 =
∫

Sn−1

(u0 · u)+dS(u) =
1
2

∫

Sn−1

| u0 · u | dS(u),

where (t)+ = max{t, 0} for t ∈ R, and where S denotes Lebesgue measure on Sn−1, i.e., S

is (n− 1)-dimensional Hausdorff measure.
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Lemma 2.2 (see [12]) If K ∈ Sn
0 , then ωn−1rn+1

K

ncφ? |K| ≤ hΓφK(u) ≤ RK

cφ?
for all u ∈ Sn−1,

where the real numbers RK and rK are defined by

RK = max
u∈Sn−1

ρK(u) and rK = min
u∈Sn−1

ρK(u).

It will be helpful to also use the alternate definition of Orlicz projection body (see [11]):

hΠφK(x) = inf{λ > 0 :
∫

Sn−1

φ

(
1
λ

(x · u)ρK∗(u)
)

dVk(u) ≤ 1},

if K ∈ Kn
0 , then the polar body K∗ is defined by

K∗ = {x ∈ Rn : x · y ≤ 1 for all y ∈ K},

it will be convenient to use the volume-normalized conical measure VK defined by

| K | dVK =
1
n

hKdSK .

Lemma 2.3 (see[11]) Suppose φ ∈ C and K ∈ Kn
0 . If x0 ∈ Rn \ {0}, then

∫

Sn−1

φ

(
x0 · u

λ0hK(u0)

)
dVK(v) = 1

if and only if hΠφK(x0) = λ0.

Lemma 2.4 (see[11]) If φ ∈ C and K ∈ Kn
0 , then

1
2ncφRK

≤ hΠφK(u) ≤ 1
cφrK

for all u ∈ Sn−1, where the real numbers RK and rK are defined by

RK = max
u∈Sn−1

hK(u) and rK = min
u∈Sn−1

hK(u).

3 Proof of Main Theorems

Theorem 3.1 Suppose φi ∈ C and Kj ∈ S0
n. If φi → φ ∈ C and Kj → K ∈ S0

n, then
Γφi

Kj → ΓφK.
Proof (1) First, for fixed j ∈ N+ (the set of all the positive integer), suppose Kj ∈ Sn

0

and u0 ∈ Sn−1. We will show that hΓφi
Kj

(u0) → hΓφKj
(u0). Let hΓφi

Kj
(u0) = λi and note

that Lemma 2.2 gives
ωn−1r

n+1
Kj

ncφ?
i
| Kj | ≤ λi ≤

RKj

cφ?
i

.

Since φ?
i → φ? ∈ C, we have cφ?

i
→ cφ? ∈ (0,∞) and thus there exist a, b such that 0 < a ≤

λi ≤ b < ∞ for all i.
To show that the bounded sequence {λi} converges to hΓφKj

(u0), we show that every
convergent subsequence of {λi} converges to hΓφKj

(u0). Denote an arbitrary convergent
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subsequence of {λi} by {λi} as well, and suppose that for this subsequence we have λi → λ∗.

Obviously, 0 < a ≤ λ∗ ≤ b. Since hΓφi
Kj

(u0) = λi, Lemma 2.1 gives

1 =
∫

Sn−1

φ?
i

(
u0 · u

λi

ρKj
(u)

)
dV ∗

Kj
(u).

This, together with φ?
i → φ? ∈ C and λi → λ∗, gives

1 =
∫

Sn−1

φ?

(
u0 · u
λ∗

ρKj
(u)

)
dV ∗

Kj
(u).

By Lemma 2.1 this gives hΓφKj
(u0) = λ∗. This shows that hΓφi

Kj
(u0) → hΓφKj

(u0).
Therefore, for any ε > 0, there exists N1 ∈ N+, for all i > N1, we have

| hΓφi
Kj

(u0)− hΓφKj
(u0) |< ε

2
.

(2) Next, suppose u0 ∈ Sn−1, we will show that

hΓφKj
(u0) → hΓφK(u0).

Let hΓφKj
(u0) = λj , and note Lemma 2.2 gives

ωn−1r
n+1
Kj

ncφ? | Kj | ≤ λj ≤
RKj

cφ?

.

Since Kj → K ∈ Sn
0 , we have rKj

→ rK > 0 and RKj
→ RK < ∞ and thus there exist

c, d such that 0 < c ≤ λj ≤ d < ∞, for all j. To show that the bounded sequence {λj}
converges to hΓφK(u0), we show that every convergent subsequence of {λj} converges to
hΓφK(u0). Denote an arbitrary convergent subsequence of {λj} by {λj} as well, and suppose
that for this subsequence we have λj → λ¦. Obviously, c ≤ λ¦ ≤ b. Let K̄j = λ−1

j Kj . Since
λ−1

j → λ−1
¦ and Kj → K, we have

K̄j → λ−1
¦ K.

Now (2.5), and the fact that hΓφKj
(u0) = λj , shows that hΓφK̄j

(u0) = 1, i.e,
∫

Sn−1

φ?
(
(u0 · u)ρK̄j

(u)
)
dV ∗̄

Kj
(u) = 1

for all j. But K̄j → λ−1
¦ K and the continuity of φ? now give

∫

Sn−1

φ?
(
(u0 · u)ρλ−1

¦ K(u)
)
dV ∗

λ−1
¦ K

(u) = 1,

which by Lemma 2.1 give hΓφλ−1
¦ K(u0) = 1. This (2.5) and (2.2) now give hΓφK(u0) = λ¦.

This shows that hΓφKj
(u0) → hΓφK(u0).

Therefore, for any ε > 0, there exists N2 ∈ N+ for all j > N2, we have

| hΓφKj
(u0)− hΓφK(u0) |< ε

2
.
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(3) To sum up, for all ε > 0, there exists N = max{N1, N2} ∈ N+ for all i, j > N , we
have

| hΓφi
Kj

(u0)− hΓφK(u0) |
≤ | hΓφi

Kj
(u0)− hΓφKj

(u0) | + | hΓφKj
(u0)− hΓφK(u0) |< ε

2
+

ε

2
= ε,

hΓφi
Kj

(u0) → hΓφK(u0).

Hence Γφi
Kj → ΓφK.

From the proof of Theorem 3.1, we can obtain the following two results that proved by
Lutwak, Yang and Zhang (see [12]).

Corollary 3.2 Suppose φ ∈ C and Kj ∈ S0
n. If Kj → K ∈ S0

n, then ΓφKj → ΓφK.
Corollary 3.3 Suppose φi ∈ C and K ∈ S0

n. If φi → φ ∈ C, then Γφi
K → ΓφK.

Now, we prove Theorem 2 that is illustrated in Section 1, it is just the following theorem.
Theorem 3.4 Suppose φi ∈ C and Kj ∈ K0

n. If φi → φ ∈ C and Kj → K ∈ K0
n, then

Πφi
Kj → ΠφK.
Proof (1) First, for fixed j ∈ N+, suppose Kj ∈ Kn

0 and u0 ∈ Sn−1. We will show
that hΠφi

Kj
(u0) → hΠφKj

(u0). Let hΠφi
Kj

(u0) = λi, and note that Lemma 2.4 gives

1
2ncφi

RKj

≤ λi ≤ 1
cφi

rKj

.

Since φi → φ ∈ C, we have cφi
→ cφ ∈ (0,∞) and thus there exist a, b such that 0 < a ≤

λi ≤ b < ∞ for all i. To show that the bounded sequence {λi} converges to hΠφKj
(u0), we

show that every convergent subsequence of {λi} converges to hΠφKj
(u0). Denote an arbitrary

convergent subsequence of {λi} by {λi} as well, and suppose that for this subsequence we
have λi → λ∗. Obviously, 0 < a ≤ λ∗ ≤ b. Since hΠφi

Kj
(u0) = λi, Lemma 2.3 gives

1 =
∫

Sn−1

φi

(
u0 · u

λihKj
(u)

)
dVKj

(u).

This, together with the facts that φi → φ ∈ C and λi → λ∗ ∈ (0,∞), gives

1 =
∫

Sn−1

φ

(
u0 · u

λ∗hKj
(u)

)
dVKj

(u).

When combined with Lemma 2.3, this gives the desired hΠφKj
(u0) = λ∗, and completes the

argument showing that hΠφi
Kj

(u0) → hΓφKj
(u0).

Therefore, for all ε > 0, there exists N1 ∈ N+, when i > N1, we have

| hΠφi
Kj

(u0)− hΠφKj
(u0) |< ε

2
.

(2) Next, suppose u0 ∈ Sn−1, we will show that hΠφKj
(u0) → hΠφK(u0). Let

hΠφKj
(u0) = λj ,
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and note Lemma 2.4 gives 1
2ncφRKj

≤ λj ≤ 1
cφrKj

. Since Kj → K ∈ Kn
0 , we have rKj

→ rK >

0 and RKj
→ RK < ∞ and thus there exist c, d such that 0 < c ≤ λj ≤ d < ∞ for all j. To

show that the bounded sequence {λj} converges to hΠφK(u0), we show that every convergent
subsequence of {λj} converges to hΠφK(u0). Denote an arbitrary convergent subsequence of
{λj} by {λj} as well, and suppose that for this subsequence we have λj → λ¦. Obviously,
0 < c ≤ λ¦ ≤ b. Let K̄j = λjKj . Since λj → λ¦ and Kj → K, we have

K̄j → λ¦K.

The fact that hΠφKj
(u0) = λj , together with (2.2) and (1.3), shows that hΠφK̄j

(u0) = 1, i.e.,

∫

Sn−1

φ

(
u0 · u

hK̄j
(u)

)
dVK̄j

(u) = 1

for all j. But K̄j → λ¦K implies that the functions hK̄j
→ hλ¦K , uniformly, and the measures

SK̄j
→ Sλ¦K , weakly. This in turn implies that the measures VK̄j

→ Vλ¦K , weakly, and hence
using the continuity of φ we have

∫

Sn−1

φ

(
u0 · u

hλ¦K(u)

)
dVλ¦K(u) = 1,

which by Lemma 2.3 give hΠφλ¦K(u0) = 1. This, together with (2.2) and (1.3), yields the
desired hΠφK(u0) = λ¦, and shows that hΠφKj

(u0) → hΠφK(u0).
Therefore, for any ε > 0, there exists N2 ∈ N+, for all j > N2, we have

| hΠφKj
(u0)− hΠφK(u0) |< ε

2
.

(3) To sum up, for all ε > 0, there exists N = max{N1, N2} ∈ N+, for all i, j > N , we
have

| hΠφi
Kj

(u0)− hΠφK(u0) |
≤ | hΠφi

Kj
(u0)− hΠφKj

(u0) | + | hΠφKj
(u0)− hΠφK(u0) |< ε

2
+

ε

2
= ε,

hΠφi
Kj

(u0) → hΠφK(u0),

Hence Πφi
Kj → ΠφK.

From the proof of Theorem 3.4, we can obtain the following results that were proved
by Lutwak, Yang and Zhang (see [11]).

Corollary 3.5 Suppose φ ∈ C and Kj ∈ K0
n. If Kj → K ∈ K0

n, then ΠφKj → ΠφK.
Corollary 3.6 Suppose φi ∈ C and K ∈ K0

n. If φi → φ ∈ C, then Πφi
K → ΠφK.
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关于Orlicz 凸体的收敛性的注

李泽清1,2, 朱保成2, 曾春娜3

(1. 毕节学院数学与计算机科学学院, 贵州毕节 551700)

(2. 西南大学数学与统计学院, 重庆 400715)
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摘要: 本文研究了Orlicz 投影体和 Orlicz 质心体的性质. 利用几何分析的方法, 获得了 Orlicz 投影算

子和 Orlicz 质心算子的连续性.
关键词: Orlicz 投影体; Orlicz 质心体; 收敛性
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