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Abstract: In this paper, we investigate the characters of Orlicz projection body and Orlicz
centroid body. By geometric analysis, we obtain the continuities of the Orlicz projection operator
and Orlicz centroid operator.
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1 Introduction and Main Results

The classical Brunn-Minkowski theory emerged at the turn of the 19th into the 20th
century, when Minkowski began his study of the volume of the Minkowski sum of convex
bodies. In the early 1960’s, Firey (see e.g. Schneider [13]) introduced an L,-extension
of Minkowski’s addition (now known as Firey-Minkowski L,-addition) of convex bodies.
In the middle of 1990s, it was shown in [9,10], that a study of the volume of these Firey-
Minkowski L,-combinations leads to an embryonic L,-Brunn-Minkowski theory. This theory
was expanded rapidly (see e.g. [1-2, 4-6, 8-11, 14]).

The works of Haberl et al. [4-6] and the recent work of Ludwig and Reitzner [8],
made it apparent that the time is ripe for the next step in the evolution of the Brunn-
Minkowski theory towards the Orlicz-Brunn-Minkowski theory. Lutwak, Yang and Zhang
recently introduced the notions of Orlicz projection bodies and Orlicz centroid bodies. It was
shown in [11, 12] that a study of the Orlicz Petty projection inequality and Orlicz centroid
inequality leads to the Orlicz Brunn-Minkowski theory which is a natural extension of the
L,-Brunn-Minkowski theory. Work of Haberl et al. [7] proved the even Orlicz Minkowski
problem. Lutwak, Yang and Zhang (see [12]) established the Orlicz centroid inequality for
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convex bodies and conjectured that their inequality can be extended to star bodies. In
[15], Zhu confirmed this conjecture. In [16], the reverse form of the Orlicz Busemann-Petty
centroid inequalities was obtained in the two-dimensional case.

Let ¢ : R — [0,00) be an even strictly convex function such that ¢(0) = 0. The class
of such a ¢ will be denoted by C. Let K be a convex body (i.e., a compact, convex set with
non-empty interior) in R™ that contains the origin in its interior. Denote by | K | the volume
of K. The Orlicz centroid body I', K of K, as defined in [12], is the convex body whose

support function at x € R™ is given by

B, sc(@) = inf{A > 0 |Il(| /K¢ (Z ) ay <1y, (1.1)

where x - y denotes the standard inner product of x and y in R™ and the integration is with
respect to Lebesgue measure in R”.
We say that a sequence {¢;}, where the ¢; € C, is such that ¢; — ¢¢ € C provided

65— 0o 1= max | 6:(t) — u(®) |- 0

for every compact interval I C R.

We get the continuity of Orlicz centroid operator by the definition of the Orlicz centroid
body as follows:

Theorem 1 Suppose ¢; € C and K is a star body (about the origin) in R™. If
¢, > ¢pe€Cand K; — K, then 'y, K; — I',K.

Lutwak, Yang and Zhang also established the definition of the Orlicz projection body
II,K of K, whose support function is given by (see [11])

hi, i (x) = inf{A >0 /S é (%) hi(w)dS(u) < n | K [} (1.2)
For ¢ > 0, we have

We get the continuity of Orlicz projection operator by the definition of the Orlicz pro-
jection body as follows:

Theorem 2 Suppose ¢; € C and K is a convex body in R" that contains the origin
in its interior. If ¢; — ¢ € C and K; — K, then I, K; — I, K.

2 Preliminaries

In this section we collect some basic well-known facts that we will use in the proofs of
our main results. For references about the Brunn-Minkowski theory, see [3, 13].

Let p(K,-) = px : R™\{0} — [0,00) denote the radial function of the set K C R",
star-shaped about the origin; i.e. px(x) = max{\ > 0: \x € K}. If px is strictly positive
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and continuous, then we call K a star body and we denote the class of star bodies (about
the origin) in R"” by Sf'. If ¢ > 0, then obviously for the dilate cK = {czx : © € K'} we have

PeK = CPK- (2.1)

Let h(K,-) = hg : R™ — R denote the support function of the convex body K in R",
ie., hg(r) =max{z-y: y € K}, we have

hek () = chig(x) and hg(cx) = chi (). (2.2)

For ¢ € C define ¢* € C by

d)*(t):/o o(ts)ds™, (2.3)

where ds" = ns""'ds. Obviously, ¢; — ¢ € C implies ¢} — ¢5.
It will be helpful to also use the alternate definition of Orlicz centroid body (see [12]):

hr, e (z) = inf{A > 0: /

S

Lo (e i) i@ e

where ¢* is defined by (2.3) and dV}} is the volume-normalized dual conical measure of K,
defined by | K | dVj; = pidS, where dS is Lebesgue measure on S"°! ( ie., (n — 1)-
dimensional Hausdorff measure). For ¢ > 0, an immediate consequence of definitions (2.4)
and (2.1) is the fact that

FycK = cl'y K. (2.5)

Lemma 2.1 (see [12]) Suppose K € S§' and ug € S"~*. Then

if and only if hp, x (uo) = Xo.
Associated with each ¢ € C is ¢4 € (0,00) defined by

¢y = min{c > 0 : max{¢(c), p(—c)} < 1}.

Throughout B = {x € R" : | z | < 1} will denote the unit ball centered at the origin,
and w,, = | B | will denote its n-dimensional volume. We shall make use of the trivial fact
that for ug € S"1,

1
Wp—1 = / (UO . u)+d8(u) = / | Up - U | ds(u)ﬂ
Sn—1 2 Sn—1

where (t), = max{t,0} for t € R, and where S denotes Lebesgue measure on S"~! i.e., S

is (n — 1)-dimensional Hausdorff measure.
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Lemma 2.2 (see [12]) If K € S, then w:c_;*rlgll < hp¢K(u) < %‘j for all u € S,

where the real numbers Rx and rx are defined by
Ryx = max pg(u) and rxg = min pg(u).

uesSn—1 ueSn—1

It will be helpful to also use the alternate definition of Orlicz projection body (see [11]):

hit, i (x) = nf{A >0 ; /

Sn—1

1
o (36w ()) ) < 1),
if K € K, then the polar body K™ is defined by
K'={xeR":xz-y<1 forally € K},
it will be convenient to use the volume-normalized conical measure Vi defined by
1
| K | dVi = ﬁthSK'

Lemma 2.3 (see[11]) Suppose ¢ € C and K € K. If o € R™ \ {0}, then

/s i (M) dVic(v) =1

if and only if hir, x (z0) = Ao.
Lemma 2.4 (see[ll]) If ¢ € C and K € K}, then
1 1

——<h <
27”LC¢RK - Hd)K(U) o CoTK

for all u € S"~!, where the real numbers Ry and rx are defined by

Ry = max hg(u) and rg = min hg(u).
uesn—1 uesn—1

3 Proof of Main Theorems

Theorem 3.1 Suppose ¢; € C and K; € Sp". If ¢; — ¢ € C and K; — K € Sy", then
Iy K; — TyK.

Proof (1) First, for fixed j € N (the set of all the positive integer), suppose K; € Si!
and uy € S"!. We will show that hr, i, (uo) — hr, K, (u). Let hr, x;(ug) = \; and note

that Lemma 2.2 gives
+1
Wn—1Tg Ry,
R o < S
neg: | Kj | Co;

Since ¢} — ¢* € C, we have ¢4 — ¢4+ € (0,00) and thus there exist a,b such that 0 < a <
A < b < oo for all 1.
To show that the bounded sequence {\;} converges to hr,x,(ug), we show that every

convergent subsequence of {\;} converges to hr,x,(ug). Denote an arbitrary convergent
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subsequence of {\;} by {\;} as well, and suppose that for this subsequence we have A; — A,.
Obviously, 0 < a < A, <b. Since hr, g, (ug) = \;, Lemma 2.1 gives

Sn—1 i

This, together with ¢ — ¢* € C and \; — A, gives

gn—1 *

By Lemma 2.1 this gives hr,k, (uo) = A.. This shows that hp%KJ (ug) — hr,k, (uo).

Therefore, for any € > 0, there exists N; € NT, for all ¢ > N;, we have

€
| hrcbin (Uo) - hFd)Kj (UO) |< 5
(2) Next, suppose ug € S" !, we will show that
hr, x; (uo) = hr, x(uo).

Let hr,k,(uo) = A;, and note Lemma 2.2 gives

n+1
wn—lrl(j S )\j S RKJ-.
7’LC¢* K] | Cop*

Since K; — K € Sy, we have rg; — rg > 0 and Rg, — Rg < oo and thus there exist
¢,d such that 0 < ¢ < \; < d < oo, for all j. To show that the bounded sequence {\;}
converges to hr,x(ug), we show that every convergent subsequence of {);} converges to
hr,x(uo). Denote an arbitrary convergent subsequence of {\;} by {)A;} as well, and suppose
that for this subsequence we have \; — \,. Obviously, ¢ < A\, < b. Let K; = /\j_lKj. Since
At — Agtand K; — K, we have

K; = X\ 'K.
Now (2.5), and the fact that hr, k,(uo) = A;, shows that hp, g (uo) =1, i.e,

/Snl o ((Uo . u)p[(j (u)) dVE,j (u) -1

for all j. But K; — A;'K and the continuity of ¢* now give

/s 6" ((uo - sz (w)) AV (u) = 1,

which by Lemma 2.1 give A \-1(ug) = 1. This (2.5) and (2.2) now give hr,x(uo) = Ao.
This shows that hF¢Kj (UO> — hF¢K(u0).
Therefore, for any € > 0, there exists Ny € NT for all j > Ny, we have

€
| hr,k; (up) — hF¢K(UO) |< 5
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(3) To sum up, for all € > 0, there exists N = max{Ny, No} € NT for all 4,5 > N, we
have

| hFdJi Kj (’LLo) - hF¢K(u0> |
3
< | hl"ij (UO) - hI‘¢Kj (’LLO) | + | hF¢K,~ (uo) — hl"¢K(Uo) |< 5 4

hrd,l.Kj (Uo) - hF¢K(uO)-

g

2~ &

Hence I'y, K; — T'4 K.

From the proof of Theorem 3.1, we can obtain the following two results that proved by
Lutwak, Yang and Zhang (see [12]).

Corollary 3.2 Suppose ¢ € C and K; € Sp". If K; — K € Sy", then 'y K; — 'y K.

Corollary 3.3 Suppose ¢; € C and K € Sy". If ¢; —» ¢ € C, then 'y, K — T',K.

Now, we prove Theorem 2 that is illustrated in Section 1, it is just the following theorem.

Theorem 3.4 Suppose ¢, € C and K; € Ky". If ¢, = ¢ € Cand K; — K € K", then
Iy, K; — I, K.

Proof (1) First, for fixed j € NT, suppose K; € K7 and uo € S"~!. We will show
that hanj (ugp) — hir, k, (uo). Let hﬂm k,(ug) = A;, and note that Lemma 2.4 gives

1 1

——— <\ < :
2%0@. RKj CdgiTKj

Since ¢; — ¢ € C, we have ¢y, — ¢, € (0,00) and thus there exist a,b such that 0 < a <
i <b < oo for all i. To show that the bounded sequence {);} converges to hi,k, (ug), we
show that every convergent subsequence of {);} converges to hr, k, (o). Denote an arbitrary
convergent subsequence of {\;} by {\;} as well, and suppose that for this subsequence we
have \; — \.. Obviously, 0 < a < A, < b. Since b, k; (ug) = \;, Lemma 2.3 gives

1= /S &; (%) Vi, (u).

This, together with the facts that ¢; — ¢ € C and \; — A, € (0,00), gives

1= /S & (%) Vi, (1),

When combined with Lemma 2.3, this gives the desired hi, k,(uo) = M., and completes the
argument showing that hm, r; (uo) — hr,k, (uo).
Therefore, for all € > 0, there exists N; € N, when i > N;, we have

€
| hnasin (uo) — hi, k, (ug) |< 3
(2) Next, suppose ug € S" !, we will show that hi, i, (uo) — hir, i (uo). Let

hH¢Kj (Uo) = )\j7
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and note Lemma 2.4 gives ;RK <A< W%. Since K; — K € K, we have rx, — rg >

2ncy

0 and Rg, — Rx < oo and thus ‘]chere exist c,c]i such that 0 < ¢ < \; <d < oo for all 5. To
show that the bounded sequence {\;} converges to A, x (uo), we show that every convergent
subsequence of {);} converges to hi, x(uo). Denote an arbitrary convergent subsequence of
{A\;} by {\;} as well, and suppose that for this subsequence we have A\; — X,. Obviously,

0<c<X <b. Let K; = \;K;. Since \; — X\, and K; — K, we have
Kj —>>\<>K.

The fact that hi,k, (uo) = A, together with (2.2) and (1.3), shows that hyy, ., (uo) = 1, i.e.,

/Sn—l ’ (hqf(;t)) Vg, (u) =1

for all j. But K; — A\, K implies that the functions h &, — hx,x, uniformly, and the measures

S &, = Sx. ki, weakly. This in turn implies that the measures Vi, — Vi, i, weakly, and hence

using the continuity of ¢ we have

/sn1 ¢ <}M(u)> dVi,x(u) =1,

which by Lemma 2.3 give hr,x,x(uo) = 1. This, together with (2.2) and (1.3), yields the
desired h, i (uo) = Ao, and shows that Ay, x, (uo) — hir, x (uo)-

Therefore, for any ¢ > 0, there exists N, € NT, for all j > N, we have
€

| hii, i, (o) — hi,x (uo) |< 5

(3) To sum up, for all £ > 0, there exists N = max{Ny, No} € N*, for all i,j > N, we

have

|, x; (wo) — b,k (uo) |

e €
< | hn,, x;(uo) = b, i, (uo) | + | b, i, (o) — b,k (uo) [< sts=6

hnd)in (Uo) - hH¢K(UO)a

Hence 114, K; — II, K.

From the proof of Theorem 3.4, we can obtain the following results that were proved
by Lutwak, Yang and Zhang (see [11]).

Corollary 3.5 Suppose ¢ € C and K; € y". If K; — K € Ky, then IIyK; — I, K.

Corollary 3.6 Suppose ¢; € C and K € Ky". If ¢; — ¢ € C, then 11, K — II, K.
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