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Abstract: In this paper, the law of sines and related geometric inequalities for an n-simplex
in an n-dimensional hyperbolic space and an n-dimensional spherical space are studied. By using
the theory and method of distance geometry, we give the law of sines for an n-simplex in an n-
dimensional hyperbolic space and an n-dimensional spherical space. As applications, we obtain
Hadamard type inequalities and Veljan-Korchmaros type inequalities in n-dimensional hyperbolic
space and n-dimensional spherical space. In addition, some new geometric inequality about “metric
addition” involving volume and n-dimensional space angle of simplex in H"(K) and S™(K) is
established.
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1 Introduction
The law of sine of triangle (AABC') in the Euclidean plane is well known as follows

a b c abe

smnA  snB snC 25’ (1.1)

where S = \/p(p —a)lp—b)(p—c),p=3(a+b+c).
Let a, b, ¢ be the edge-lengths of a triangle ABC' in the hyperbolic space with curvature
—1. Then we have the law of sine of hyperbolic triangle ABC' as follows (see [1])

sinh a sinh b _ sinh ¢ _ sinh a sinh b sinh ¢

sinA  sinB  sinC 2A ’

(1.2)

where A = \/sinhp(sinhp — sinha)(sinhp — sinh b)(sinh p — sinh¢), p = $(a + b+ ¢).
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We denote by a,b,c the edge-lengths of a triangle ABC in the spherical space with

curvature 1. Then we have the law of sine of spherical triangle ABC' as follows (see [2])

sina sinb sine sinasinbsinc (1.3)
sinA sinB sinC 2A ’ '

where A = \/Sinp(sinp —sina)(sinp — sinb)(sinp — sinc), p = S(a+ b+ c) € (0,7).

The law of sine of triangle in Euclidean plane were generalized to the n-dimensional
simplex in n-dimensional Euclidean space E™. Let {Ag, Ay, -+, A,} be the vertex sets of
n-dimensional simplex 2,,(E) in the n-dimensional Euclidean E™. Denote by V' the volume
of the simplex Q,(F), and F; (i = 0,1,---,n) the areas of i-th face f; = {Ao, 41, -+,
A1, Ait1, -+, Ay} ((n — 1)-dimensional simplex) of the simplex €2,,(E). In 1968, Bators
defined the n-dimensional sines of the n-dimensional vertex angles a; (i = 0,1,--- ,n) for

the n-dimensional simplex Q,,(E), and established the law of sines for €2,,(E) as follows (see

El)

Fo _ Fy :“':(n_l)!H?:OF]' (1.4)
sinag  sina; (nV)n—t ~ '

Obviously, formula (1.4) is generalization of formula (1.1) in n-dimensional Euclidean space
E™. Then, some different forms of generalization about formula (1.1) was given in [4, 5, 6].

From 1970s, many geometry researchers were attempted to generalize formulas (1.2)
and (1.3) to an n-dimensional hyperbolic simplex (spherical simplex), to establish the law
of sines in n-dimensional hyperbolic space H™ and in n-dimensional spherical space S™. In
1978, Erikson defined the n-dimensional polar sine of i-th face f;(P; ¢ f;) of Q,(S) in S, 1
(see [7]) as follows

"Polsin F; = |[vo, v, ,Vic1, Vi1, -+ 5 vn)| (i=0,1,--- ,n). (1.5)
Let "sin P; be the n-dimensional sine of the i-th angle of €,,(S) (see [7]). The law of sines
in the n-dimensional spherical space S, ;1 was obtained in [7] as follows

"Polsin Fy  "Polsin by _ "Polsin F,,

nsin Py ngin Py ngin P,

(1.6)

In 1980s, Yang and Zhang (see [8, 9, 10]) made a large number of basic works of geometric
inequality in n-dimensional hyperbolic space H™ and in n-dimensional spherical space S",
and established the law of cosines in n-dimensional hyperbolic space H" and n-dimensional
spherical space S™. But they did not establish the law of sines in n-dimensional hyperbolic
space H™ and n-dimensional spherical space S™. In addition, some new geometric inequality
about “metric addition” involving volume and n-dimensional space angle of simplex in
H"(K) and S™(K) is established.

In this paper, we give generalizations of (1.2) and (1.3) in n-dimensional hyperbolic space
H" and in n-dimensional spherical space 5™, and establish the law of sines n-dimensional

simplex in n-dimensional hyperbolic space H™ and n-dimensional spherical space S™. As
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their applications, we obtain Veljan-Korchmaros type inequalities and Hadamard type in-

equalities in n-dimensional hyperbolic space H" and n-dimensional spherical space S™.

2 The Law of Sine in Hyperbolic Space

We consider the model of the hyperbolic space in Euclidean space (see [9]).
Let B be a set whose elements x (1,2, - ,2,) are in an n-dimensional vector space
and meet the following condition 2§ + 23 + - -+ + 22 < 1. Given a distance between z and y

in the set B, denote by zy satisfying

1— _ .
cosh\/jxy: L1 — T2l LnYn .
Vid-ad- 2l

Then the metric space with this distance in R"*! is called n-dimensional hyperbolic space
with curvature K (< 0), denote by H"(K).

Let ¥,,(H) be an n-dimensional simplex in the n-dimensional hyperbolic space H™(K),
and {P, Py, -+, P,} be its vertexes, a;; (0 < ¢,j < n) be its edge-length, V' be its volume,
respectively.

To give the law of sines in n-dimensional hyperbolic space H"(K), we give the following
definition.

Definition 2.1 Suppose that ¥, (H) = {Py, P1,- -, P,} be an n-dimensional simplex
in n-dimensional hyperbolic space H"(K). n edges PyP; (i = 1,2,--- ,n) with initial point
P, form an n-dimensional space angle Py of the simplex 3, (H). Let Z} be the angle formed
by two edges FyP; and FPyP;. The sine of the n-dimensional space angle F, of the simplex
3, (H) is defined as follows

sin Py = (det Qo)?, (2.1)
where e
1 cost, ]
1 . .
QOZ . (17]:1727"'771)'
cos 2/5 1
Similarly, we can define the sine of the n-dimensional space angle P; (i =1,2,--- ,n) of

the simplex ¥, (H).

At first, we prove that this definition is sensible.

Actually, for n-ray PoP; (i = 1,2,--- ,n) of the simplex X,,(H) in n-dimensional hyper-
bolic space H"(K), and denote by z/ﬁ (i,j =1,2,--- ,n) the included angle between two rays
PyP; and PyP;. According to [12], we know that there exist n-ray PP/ (i = 1,2,--- ,n) which
are independence in n-dimensional Euclidean space E™, such that the included angle between
two rays Py P/ and PP} is also ’L/,\j (i,j =1,2,---,n). Assumethat a; (i = 1,2,--- ,n) denote

—_—
the unit vector of the vector PjP! (i,7 = 1,2,--- ,n), then the unit vectors ay,aq, -,y
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are also independence. So the Gram matrix g of the unit vectors ay, as, - - - , a, is positive
and it is easy to know that 0 < det )y < 1. Therefore, this definition is sensible.

Remark Especially two-dimensional space angle of two-dimensional hyperbolic sim-
plex (that is hyperbolic triangle) is just interior angle of hyperbolic triangle. So the n-
dimensional space angle of n-dimensional simplex in n-dimensional hyperbolic space H" (K)
is extension of interior angle of hyperbolic triangle.

Definition 2.2 (see [12]) Suppose that X,,(H) = {F, P1,--- , P,} be an n-dimensional

simplex in n-dimensional hyperbolic space H" (K), its volume V' is the real number satisfying

CCED" e, (), (2.2)

.12 o
sinh*v—-KV = 2 (n)

where A, (H) = (cosh v —Kai;)};—o-
Theorem 2.1  Suppose that ¥, (H) = {P, P1,--- , P,} be an n-dimensional simplex

in the n-dimensional hyperbolic space H"(K), we have

H sinh vV —KCLij ]___[ sinh V —KCLij

1<i<j<n _0<i<y<n,i, j#L -
sin P, N sin P B
I1 sinh v —Ka;, II sinh \/jaij
_ 0<i<i<n-1 _ 0<i<y<n (2.3)
sin P, 2% .n!-sinh V=KV’

where definitions of sin P; (¢ = 0,1,-- ) are the same as Definition 2.1.
Remark When n = 2 in Theorem 2.1, it is the law of sine of a hyperbolic triangle.
Lemma 2.2 (see [1]) (the law of cosine of a hyperbolic triangle) For hyperbolic triangle
ABC in H?*(—1), then

cosha = coshb - coshc —sinh b - sinh ¢ - cos A, (2.4)

where a, b, ¢ be edge-lengths of hyperbolic triangle ABC and A be the interior angle.
Lemma 2.3 Suppose that X, (H) = {P,, P1,- -, P,} be an n-dimensional simplex in

n-dimensional hyperbolic space H"(K), we have

—

1 cost, ]

.12 1 - .12
sinh V —-KV = W(i_l_[lsulh V —Kaoi) : - ) (25)

cost,J 1
where ;} (1,7 =1,2,---,n) be the included angle between the edges P, P; and P, P;.
Proof Assume that the row or the column number of determinant det(A,, (H)) begins
from 0. Now, we transform the determinant det(A,(H)) as follows:

(1) fori=1,2,--- ,n, plus (— coshv/—Kaq;) times the 0-th row to the i-th row;
(2) expanding the determinant at the 0-th column;



218 Journal of Mathematics Vol. 34

| = e 1 ;- I S .
(3) fori =1,2,--- ,m, nh v ag times the i-th row and v Rag times the i-th
column.
1 cosh v/ —Kap1 ce coshv/—Kagn
det(A, (H)) = coshv/—Kaig 1 ce coshv—Kain
coshv/—Ka,g coshv—Kani cee 1

1 coshv—Kap . coshv/—Kag,,
0 1 — cosh® vV=Kao; --+  coshv/—Kay, — coshv/—Kag, cosh/—Kag;

0 coshv—Kan —coshv—Kag, coshyv—Kagy -+ 1 — cosh? vV—Kag,

1 — cosh? v/ —Kag ---  coshv—Kay, —coshv/—Kag, coshv—Kag;

coshv—Kay,; — coshv/—Kag, coshv/—Kagy --- 1 — cosh® vV=—Kaon,

1—cosh? vV—Kag: . coshv—Kay, —cosh/—Kagy, coshv—Kag:
n sinh? v—Kag sinh \/—Kao1 sinh vV—Kagn
:(HsinhQ,/—KaOi)
i=1 cosh v—Kani—cosh v/—Kagn cosh vV/—Kao: . 1—cosh? vV=—Kagn
sinh /—Kagi sinh v/—Kagn sinh? v—Kagn
1 cosﬂ
n 1
=(-1)" ( H sinh? \/ —Ka()i)
i=1 —
cos i, j 1
By (2.3), we have
A n[ 2
. . 2
det(A, () = 2 Gt VTRV, (2.6)

(="
Substituting (2.6) into above equality, we get (2.5).
Proof of Theorem 2.1 According to Definition 2.1, equality (2.5) may be written as

n

1
sinhv—KV = M(Esmh V _Ka()i) - sin PO- (27>
Now we only prove that
[I sinhv—Ka; [[ sinhv—-Ka;
1<i<j<n 0<i<j<n

; = — . 2.8
sin Py 22 .nl-sinhv—KV (2:8)

Applying (2.7), we get

n

(1<H sinh V=K ) -sinh =KV =( ] sinhv=FKay) -%Hsmhﬁaorsm P
<i<j<n 1<i<i<n Pl
1

=——— [ sinhv=Kao:-sinPo.
22 - (n!)

0<i<j<n
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From above equality, we obtain (2.8).
Similarly, we can prove that other equalities in (2.3) also hold. The proof of Theorem

2.1 is completed.

3 The Law of Sine in Spherical Space

We consider the model of a spherical space in the Euclidean space (see [6]): the distance
xy between two points x and y in the points set S = {z(z1, 22, ,Tpy1) : 25 + 25+ +
22,, =+, K > 0is constant number} in the n + 1-dimensional Euclidean space E"** is the

minimal non-negative real number satisfying

cos Ty = 1y ¥ ToYo o A TnpaYnia ) 3.1
VK
N R IRy LT Y, BARRR Y I

The metric space with this distance in the point set S is called n-dimensional spherical space
with curvature K > 0, and denote by S,,(K).

Let Q,(S) be an n-dimensional simplex in n-dimensional hyperbolic space S™(K), and
{Ag, Ay,--- , A, } be its vertexes,a;; (0 <1i,j < n) be its edge-length, V' be its volume.

To give the law of sines in n-dimensional spherical space S™(K'), we give the following
definition.

Definition 3.1 Suppose that €2,,(S) = {Ao, 41, , A,,} be an n-dimensional simplex
in n-dimensional spherical space S™(K), n edges ApA; (i =1,2,--- ,n) with initial point A
form an n-dimensional space angle Aq of the simplex €2,,(A). Denote by 2/,3 be the included
angle between two edges ApA; and ApA;. The sine of the n-dimensional space angle A, of
the simplex Q,,(S) is defined as follows

sin Ay = (det By)?, (3.2)
where -
1 cost,j
1
BOZ (ivj:172a an)
cosi/,? 1
Similarly, we can define the sine of the n-dimensional space angle A; (i = 1,2,--- ,n)

of the simplex £2,,(5).
At first, we prove that this definition is sensible.

Actually, z/,; be the included angle between unit tangent vector €; and € at point A of

two arcs AgA; and AgA;. Because the unit tangent vectors €1, €3, - , €, are independence,
the Gram matrix By of the unit vectors €1, €5, - , €, is positive, and it is easy to know that

0 < det By < 1. Therefore, this definition is sensible.
Remark Especially two-dimensional space angle of two-dimensional spherical simplex

(that is spherical triangle) is just interior angle of spherical triangle. So the n-dimensional
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space angle of n-dimensional simplex in n-dimensional spherical space H"(K) is extension
of interior angle of spherical triangle.

Definition 3.2 (see [11]) Suppose that Q,,(S) = {Ao, A1, -+, A, } be an n-dimensional
simplex in n-dimensional spherical space S™(K), its volume V' is the minimal non-negative

real number satisfying

sin? VKV = (detAn) (3.3)

where A, (S) = (cos \/Faij);szo.
Theorem 3.1  Suppose that Q,(S) = {Ag, A1, -+, A, } be an n-dimensional simplex
in n-dimensional spherical space S™(K), we have

. sinv Ka;; . .

Il sinvKai ogzl;[jgn * I sin vV Kai; II sinvKa;

1<i<j<n gt _ 0<i<j<n—1 _0<i<ig<n (3.4)
sin Ag - sin Ay - - sin A, T 2% . pl.sin VKV '

where definitions of sin 4; (i =0, 1,---) are the same as Definition 3.1.
Remark When n =2 in Theorem 3.1, it is the law of sine of a spherical triangle.

Lemma 3.2 (see [2]) (the law of cosine of a spherical triangle) For spherical triangle
ABC in S%(1), then

cosa =cosb-coshc+sinb-sinc- cos A, (3.5)

where a, b, ¢ be edge-lengths of spherical triangle ABC and A be interior angle.
Lemma 3.3 Suppose that Q,(S) = {Ag, A1, -+, A, } be an n-dimensional simplex in

n-dimensional spherical space S™(K), we have

1 COS1, ]

sin? VKV = (H sin? \/>a01) : y , (3.6)

o~

cos i, J 1

where z/,; (4,7 =1,2,---,n) be the included angle between the edges Py P; and PP,
Proof Assume that the row or the column number of determinant det(A,,(S)) begins
from 0. Now, we transform the determinant det(A,,(S)) as follows:
(1) for i =1,2,--- ,n, plus (— cosvVKag;) times the 0-th row to the i-th row;
(2) expanding the determinant at the 0-th column;

(3) fori=1,2,---,n times the i-th row and G m\/» tlmes the i-th column.

? (sin \/7 i)
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1 cos \/Eam
det(A,(S)) = cos vV EKayg 1
cos VEKany cosvVKan
1 cos \/?am
0 1 —cos? vVKag,

0 cos \/?am — cos \/?aon cos VKag,

1 —cos® v Kap

cosv Ka,; —cosv Kag, cosvV Kag;

cos v Kag,
cosvV Kaq,

cos VK aon,
cos vV Kay,, — cos vV Kag, cosvV Kag,

1 — cos? VKay,
cosVKay, — cos VKag, cos VEKag

1 —cos® vV Kag,

1—cos? VKag: cos VKai,—cos VEKaon cos VKaor
n sin? \/ﬁaol sin \/?1101 sin \/?afm
Z(HSiHQ‘/Kam)
=1 cos \/fam —Cos \/?a(m cos \/fa(n 1—cos? \/fa(m
sin VKao1 sin VKagn sin? VEKaon
1 cost,J
n ) 1
:(Hsin vKaOi)
i=1
cos i, ] 1
By(3.3) we have
det(A,(S)) = 2" - (n!)?sin®> VKV. (3.7)

Substituting (3.7) into above equality, we get (3.6).

Proof of Theorem 3.1 According to Definition 3.1, equality (3.6) may be written as

. 1
sin VKV = m(

Now we only prove that

Il sin \/Eaij

1<i<j<n

_0<i<j<n

ﬁ sin \/Eam) - sin Ao. (38)
=1

sin vV Ka;;

sin Ag 2% .pl.sin VKV

Applying (3.8), we get

(3.9)

2%

sinvVKa;;) -sinvVKV = sin vV Ka;; ; 1 sin vV Kag; - sin Ag
n)
=1

1<i<jsn

1

- 2% . (n!)

1<i<j<n

( H sin\/anlv)-sinAo.

0<i<jsn
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From above equality, we obtain (3.9).
Similarly, we can prove that other equalities in (3.4) also hold. The proof of Theorem

3.1 is completed.

4 Some Geometric Inequalities

On basis of Section 2 and Section 3, we are easy to establish Veljan-Korchmaros type
inequalities and Hadamard type inequalities in the n-dimensional hyperbolic space H"(K)
and the n-dimensional spherical space S™(K). In addition, some new geometric inequality
about “metric addition” [11, 14] involving Volume and n-dimensional angle of simplex in
H"(K) and S™(K) is established.

Theorem 4.1 Suppose that X, (H) = {Py, P1, -+, P,} be an n-dimensional simplex
in n-dimensional hyperbolic space H"(K), we have

[1 sinhv-Kay =275 (n)" (sinh V=K V)"*. (4.1)

0<i<j<n

Proof Because sin P, < 1in (2.3), we have
sinh? V=KV < 2 H sinhv—-Ka;;, j=0,1,---,n. (4.2)

Multiplying by above those inequalities for j = 0,1,--- ,n, we get (4.1).
Theorem 4.2 Suppose that Q,(S) = {Ag, 41, -+, A} be an n-dimensional simplex
in n-dimensional spherical space S™(K), we have

[1 sinVEay =255 ()™ (sin VEV)"*, (4.3)

0<i<j<n

Proof BecausesinA4; < 1in (3.3), we have
sin? VKV < Hbln\/»a”, ji=0,1,---,n. (4.4)

Multiplying by above those inequalities for j = 0,1,--- ,n, we get (4.3).

Since sin Py < 1 in (2.7) and sinA; < 1 in (3.7), thus we obtain Hadamard type
inequalities in n-dimensional hyperbolic space H"(K) and n-dimensional spherical space
S™(K) as follows:

Theorem 4.3  Suppose that ¥, (H) = {Py, Py, -, P,} be an n-dimensional simplex
in n-dimensional hyperbolic space H™ (K ), we have

sinhv—-KV < CER H sinh v —Kay;. (4.5)

2

Theorem 4.4 Suppose that Q,(5) = {AO, Ay,--+, Ay} be an n-dimensional simplex

in n-dimensional spherical space S™(K), we have

sin VKV < B .Hsm\ﬁaoi (4.6)
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Theorem 4.5 Let X//(H) be n-dimensional metric addition simplex which is formed
two n-dimensional simplexes X, (H) and X/ (H) by “metric addition” operation in n-

dimensional hyperbolic space H"(K), we have

(EEbVERV s sinh VIRV ¢ sinh VIRV

sin P/ sin P; sin P/

—0,1,---,n).  (47)

Equality obtain if and only if the simplex ¥,,(H) and X, (H) is regular.

Theorem 4.6 Let Q2 (S) be n-dimensional metric addition simplex which is formed two
n-dimensional simplexes €2,,(S) and Q/,(S) by “metric addition” operation in n-dimensional
spherical space S™(K), we have

sin VKV | L sin VKV | £ sin vV KV | £
(EVEV: S (s VEVyE sVEVIE Gy, (48)
sin A/ sin A4; sin A}
Equality obtain if and only if the simplex ©,,(S) and €, (S) is regular.
Lemma 4.7 (see [15]) Let ag, b, > 0, then

[T +50% = (TLae)™ + (I &)
k=1 k=1 k=1

The Proof of Theorem 4.5 According to the definition of “metric addition” [11] in
H™(K), we have sinh v/ —Kayj; = sinh v/ —Kag; +sinhv/—Kag; (fori=1,2,---,n). Thus

3=

(4.9)

H sinh vV—Kay, = H(sinh vV —Kag; + sinh® vV—Kaj,)
i=1

i=1

L_th power on the both sides, we get

( ﬂ sinh v~ Kaf}) ¥ [ﬁ(smh V=Kag; + sinh V= Ka,)] ¥ (4.10)
1=1 =1

By (4.9) and (4.10), we have

3=

( ﬁ sinh \/jagi) " [ (sinh vV—Kag; + sinh v _Kaéi)]
=1

=11

i=1

> <Hsinh V —Ka0i>% + (Hsinh \/—Kagi)%. (4.11)
i=1 i=1

By (2.3), we obtain

(ShVERVE S (sinh Vo RV E <M)%

sin P}/ sin P, sin P}

Similarly, inequality (4.7) is easy proved for i = 1,2,---  n.
The proof of Theorem 4.6 is the same as the proof of Theorem 4.5.
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