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Abstract: In this paper, we present a family of three-step eighth-order Steffensen type meth-
ods for solving nonlinear equations by using weight function methods. Numerical experiments show
that these methods require less time to converge than the other optimal methods.
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1 Introduction

In this paper, we consider iterative methods to find a simple root of a nonlinear equation
f(z) =0, where f : I C R — R for an open interval I is a scalar function. The classical

Newton’s method [1] with second-order convergence is written as

Tp41 = Tp — f(xn)f/(xn)il' (11)

However, when the first order derivative of the function f(z) is unavailable or is expensive
to compute, the Newton’s method is still restricted in practical applications. In order to
avoid computing the first order derivative, Steffensen [2] proposed the following second-order
method

Tnt1 = Tp — f(xn)f[xny Zn]_la (12)

where 2, = x,, + f(x,), and f[-, -] is the first order divided difference. To improve the local
order of convergence, many high-order methods were proposed in open literatures, see [3-12]

and references therein. Ren et al. [3] proposed the following fourth-order methods

{ Yn =Tn — f(xn}f{xmzn]* ’ (1.3)

Trt1 =Yn — FWY)f 10, Yn] + flYns 2] = Flon, 20] + B(yn — 20) (Yn — zn)]_l’

* Received date: 2012-11-26 Accepted date: 2013-07-08
Foundation item: Supported by National Natural Science Foundation of China(11071033).
Biography: Wang Xiaofeng (1977 —), male, born at Shenyang, Liaoning, lecturer, major in numer-

ical algebra.



206 Journal of Mathematics Vol. 34

where z, =z, + f(z,) and § € R is a constant. Zheng et al. [4] presented an eighth-order
method by using the direct Newtonian interpolation, which is given by

Yn =xn — f(@0) fl2n, 2],
Un =Yn = [ () {F [0, Yn] + Fl20 Ty Yn) (. — 20) } 7,
Ty1 =tn — fwn){f[tns Yn] + fltin; T, Ynl (un — yn)
+ fltny 2ns Ty Y] (Un = yn) (wn — 20)} 1,

(1.4)

where z, = x,, + vf(x,) and v € R is a constant. Furthermore, Soleymani et al. [5] also

presented the following eight-order method

Yn =Tp — f(xn)f[xnvzn]_lv
Up :yn_f(y )f[xn7yn 71 {1+t +t2 _t3/2} (15)
Tp+1 :un_f(u unvyn {1_ l‘n,Zn _1) 1t727+(2_f[xnvzn])>‘n}v

where z, = z, — f(x,),tn = f(yn)/f(zn) and X, = f(u,)/f(z,). Other Steffensen type
methods and their applications were discussed in [6-12]. All these methods are derivative-
free in per full iteration.

The purpose of this paper is to develop a new family of eighth-order derivative-free
methods and give the convergence analysis. This paper is organized as follows. In Section
2, we present a family of three-step eighth-order iterative methods for solving nonlinear
equations. The new methods are free from any derivatives and require four evaluations of
the function f(x), therefore the new methods have the efficiency index of v/8 ~ 1.682. The
new methods agree with the conjecture of Kung and Traub [13] for the case n = 4. We prove
that the order of convergence of the new methods is eight for nonlinear equations. In Section
3, we give some specific iterative methods which can be used in practical computations.
Numerical examples are given in Section 4 to illustrate convergence behavior of our methods
for simple roots. Section 5 is a short conclusion.

2 The Methods and Analysis of Convergence

Now, we consider the iteration scheme of the form,

Yn =Tn — f(xn>.f[xmzn]ilv

Up, =Yn — K (Sn, t0) [ (Yn) f2n, Zn]_lv (2.1)
Tp41 =Up — H()\n)f(un)f/«un)ilv

where z, = T, +7f(20), S0 = f(Yn)/f(@n), tn = [(Yn)/f(20); An = f(un)/f(2n) andy € R
is a constant. H(\) and K(s,t) are some functions of one and two variables, respectively. It
is quite obvious that formula (2.1) requires five functional evaluations per iteration. To derive
a scheme with a higher efficiency index and reduce the number of functional evaluations,

we approximate f’(u,) by considering the approximation of f(z) by a rational nonlinear
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function of the form

é(x) = {ay + ao(x — z,)H1 +as(z — z,)} 1, (2.2)

where the parameters a1, as and as are determined by the condition that f and ¢ coincide

at Z,,y, and wu,. That means ¢(x) satisfies the conditions

d(zn) = f(2n);, ¢(Yn) = f(Yn), d(un) = f(un). (2.3)

From (2.2) and (2.3), we can obtain

ay = f(r,), (2.4)
az = { flzn, unlf(Yn) = flZn; ynl f (un) H I (yn) — f(UTL)}_l’ (2.5)
ag = fn, un] = fln, Yl {F (yn) = Flun)} . (2.6)

Differentiation of (2.2) gives
¢ (x) = (az — aras)(1 + as(z — z,)) . (2.7)
We can now approximate the derivative f'(z) with the derivative ¢'(x) and obtain
f'(un) = &' (un). (2.8)
From (2.4) and (2.5)-(2.8), it follows that
F'(un) = f@n) flon, wal flun, yul (F (@) = fyn)) ™" fln, za) 7 (2.9)

Substituting (2.9) into (2.1), we obtain a new family of eighth-order methods:

Yn =Tn — f(xn)f[xm Zn]ila
Un, =Yn — K (80, t0) f(Yn) [0, Zn]_lv (2.10)
T =tn — HN) s 20] F(un) (1= $0){F[ttns ] i, yn]}
The functions H(\) and K(s,t) should be determined so that the iterative method (2.10)

is of the order eight. To do that, we will use the Taylor’s series about (0) for H(\) and (0, 0)
for K(s,t) thus,

H(A) = H(0) + H'(0)A+ -, (2.11)
K(s,t) = K(0,0) + K5 + Kt + [Ko8® + 2K st + Kyt?]/2 4+ - . (2.12)
Here the subscribes denote respective partial derivatives; for example, K ; = 62;2 ((;'t’t)

(5,£)=(0,0)
etc. Petkovi¢ et al. [10] proved that the first two steps of (2.10) are fourth order methods with

K(0,0) =1, K, =1and K; = 1. We could find another coefficients H(0), H'(0), K5, Ks, Ky
by Theorem 2.1.
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Theorem 2.1 Let a € I be a simple zero of a sufficiently differentiable function f :
I € R — R for an open interval I. If xq is sufficiently close to a, then the sequence
{z,} generated by any method of the family (2.10) converges to a. If H(0) = 1, H'(0) =
1, |H"(0)| < 00, K(0,0) =1, K, =1, K, =1, K,, =2, Ky =2, K, = 2, then the family of
methods defined by (2.10) is of eighth-order.

Proof Lete, = 2, —a, ¢, = (1/n!)f™(a)/f'(a), n = 2,3,---. Using the Taylor

expansion and taking into account f(a) = 0, we have
f(zn) = f'(a)len + cae + czed + cael + csed + ceed + O(el)]. (2.13)
From (2.13), noting that z,, = z,, + vf(x,), we can obtain
fzn) = Fa)ll+7f(a))en +ca(vf'(a) + (L +7f'(a)*)er

+es(vf'(a) + (1 +7f(a)®) + 2vf () (1 + v f'(a)c3)ep + (c37* f'(a)?
Feaesvf'(a)(1 4+ (a)) (5 + 37f'(a))

+eas(vf' (@) + (L +7f'(a)*))e, + O(er), (2.14)
flon, za) = f'(a) + 2 +7f(a))eaf (a)en + (3¢5 + (c3 + 3ez)vf'(a)
+ezy f(a)®) f(a)ep + (ca(d + 67 (a) + 492 f'(a)* +7° f'(a)?)
+eacs(47f'(a) + 292 f'(a)?)) f(a)ep + Oey,), (2.15)
then,
Yn —a = Ae? + Be3 + Cet + O(e?), (2.16)
where
A = c(l+7f(a), (2.17)
B = (24 37f(a) +7°f(a)*) — &2+ 27f'(a) +7°f'()?), (2.18)

C = cs(3+6vf(a)+4vf (a)* +~v°f (a)?) — cocs(T + 10vf(a)
+77°f"(a)? + 29° f'(a)®) + 3 (4 + 57 (a) + 372 ' (a)? + 7 f'(a)®).  (2.19)

With (2.13), (2.14) and (2.16), we have

fa) = f@)lyn —a+ca(yn —a)* + O(e”)]
= f'(a)[Ae’ + Bel + (C + A%)es + O(ed)], (2.20)
so = f(a)+ f(a)esen + f'(a)(c + cs +7f (a)c3)er, + f'(a)(—2¢5 + Beacs + ca

—27f"(a)cy + 4y f (a)eacs + (cacs — )V f (a)?)ed + f'(a)(4c; — 8caes + 2¢3

+4cy + cs +vf'(a)(5c; — 10c5cs + 3¢5 + Teaes) + ¥ f'(a)? (3¢5 — Teaes

+c5 + deges) + 7 f(a)?(c3 — 2¢5¢3 + caca))er + O(eD), (2.21)
tn = (L+7f'(a))esen + (=3c5 + 2¢3 +7f'(a)(3cs — 3¢3)

+92f"(a)*(cs — c3))e2 + (8¢5 — 10cacs + 3¢y + vf'(a)(10c3 — 1deyes + 6cy)

+(5¢3 = 8eacy +Aea)y* f(a)? +7° ()’ (c3 — 2eac3 + ca))ey,
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+(—20c5 + 37c5c3 — 8ci — ldcgey + des + vy f' (a)

(60cacs — 30c; — 15¢3 — 25¢qcq + 10¢s5) + v f'(a)?(44c3cs — 20c; — 13¢5 — 20cz¢4 + 10cs)
+73 ' (a)*(17c3e3 — Tcy — 6¢3 — 9ezeq + 5es)

+*f'(a)*(3c3es — 5 — 3 — 2ezc4 + c5))et + O(eD). (2.22)

Using the Taylor expansion (2.12) with K(0,0) = K, = K; = 1, we get
K(spytn) =14 8, +ty + [Kyo52 + 2K gspt, + Kyt2]/2 + O(e2). (2.23)

Together with (2.15)—(2.23), we have

u, —a = Dej + Ee5 + O(e?), (2.24)
where
D = —1/2c;(14+~f(a))(2cs(1 +~vf(a)) + c2(—10 + Ky + 2K + K,
+yf(a)(—10 + 2K + 2K,,) + v2f'(a)* (-2 + K.,)), (2.25)
E = 1/2(=2c;cs(1+7f(a)*(2+ [ (a)) — 252 +~f(a) (1 + /' (a))?

—c5e3(1+7f"(a)) (=64 + 6Ky + 7 f'(a)(15K,s — 92) + 7% f'(a)*(—44 + 12K,

72 f()* (=6 + 3K,s) + 3Ku(2 +7f'(a)) + 6K (2 + 37" (a) +7°f'(a)?))
+ca(—=T2 + 10K + vf'(a)(—160 + 31K,s) + 7 f'(a)*(—132 + 36 K,)
+7°f/(a)*(—48 + 19K) + 7" () (=6 + 4K, ) + Kie(10 + 157 f'(a) + 692 f(a)?)
2K, (10 + 23y f'(a) + 18¥%f'(a)® + 5v° f'(a)?)))e + O(eb). (2.26)

Using (2.13), (2.14), (2.16), (2.20) and (2.24), we have

flu) = f'(a)(De;, + Eej, + O(ey)), (2.27)
fltn,un] = f(a)[l + coen + cse? + caed + (c5 + caD)el +0(el)], (2.28)
fltn,yn] = F(a)[l + c2de? + caBe? + ((C + D)ey + c3A?)et + O(e2)],  (2.29)

flun,al = f'(a) + f"(a)(un — a)/2 + O(e})
= f'(a)[1 + c2Dey, + c2Ee), + O(e))], (2.30)
Av = D(A+7f(a)) ey + [E(L+7f'(a)
—c2D(1+37f'(a) +7* f(@)*)](1 + 7 f'(a) %e;, + Oley). (2.31)

With (2.15), (2.21), and (2.28)—(2.30), we have

(]‘ B sn)f[u'm a]f[xn» Zn]
Fltn,; T0] fltn, Yol

1+ (c3 — c3)Ael + (c3(2+ 37f'(a) + 77 f'(a)?)

+co(cs — D + ey f'(a)) + 03(3 +3vf'(a) + ’Yzfl(a)2)
—c3e3(6 4+ 77" (a) + 292 f'(a)?))e, + O(e}). (2.32)
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Hence, together with (2.11), (2.24) and (2.32), we obtain

eny1 = (un —a) (1= H(0)+ ((cs — 3)AH(0) — DH'(0){1 + 7" (a)} )e;,
+(—(calea = D+ eavf'(a) + 52+ 371 (a) + 72 (a)®) + ¢3(3 + 37/ (a)
+79°f'(a)?) — c3es(6 4+ 771 (a) + 297 f(a)*))H (0) + H'(0)[c2D(1 + 37" (a)
+72f'(a)®) = (L +~f" () El(1 +~7f'(a))"*)e;, + O(e})) - (2.33)

Now, using (2.33) with H(0) =1, H'(0) =1,K(0,0) =1, K, =1,K; =1, K, = 2, K}y = 2

and K, = 2, we obtain the error equation

eni1 = (L+7f(a))*c(cs — ¢3)[(4eacs — ca) (1 +7f(a))?
+e3(546vf (a) +3v2f (a)* + 73 f(a)®)]ed + O(e?). (2.34)

This means that the convergence order of any method of family (2.10) is eighth-order, when
K0,00=K;,=K;=1, Kes=Kyy = K& =2, HO0) = H'(0) =1, and |H"(0)| < co. The

proof is completed.

3 The Concrete Iterative Methods

The functions H(A) and K (s,t) can take many forms satisfying the conditions of The-
orem 2.1. In order to reduce the computational cost, we should choose H(\) and K(s,t) as

simple as possible. In what follows, we give some iterative forms:

Hi(A) =1+ X+n7\2 Hy(A)={1+AX(n+D}1+n\) "' neER,
Ki(s,t)=(1—s—t)"", Ky(s,t) =1+s+t+(s+1)

Method 1 Taking H;(\)(n = 0) and K;(s,t) into the iterative formula (2.10), we get
a family of eighth-order methods

Yn =Ty — f(xn)f[xn; Zn]_la

Up =Y — (1 =5, — tn)_l f(yn)f[zmxn]il) (3.1)
Tpr1 =Up — (1 + )\n) (1 - Sn) f[xnv Zn]f(un){f[un; xn]f[uwmyn]}_l?
where z, = T, + Vf(2n), $n = ;gzg — ﬁz) An = £82) and 4y € R is a constants.

)P T f(z)
Method 2 Taking Ha(A)(n = —1) and Ks(s,t) into the iterative formula (2.10), we

get another family of eighth-order methods

Yn =Tp — f(xn)f[xm Zn]il,
tn =g = (14 50+ b+ (504 60)7) (@) F T2 2a] 7 (3.2)
Tpy1 =Up — f(zn)f(un) (1 - Sn) f[xnv Zn]{f[um Cl,’n]f[un, ?M](f(zn) - f(un))}ilv

where z, =z, +vf(x,), $n ENE tn o) Ap = J;((::)), and v € R is a constants.
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In terms of computational cost, the developed methods require evaluations of four func-
tions per iteration. Consider the definition of efficiency index [14] as p'/*, where p is the
order of the method and w is the number of function evaluations per iteration required by
the method. The new methods have the efficiency index of v/8 &~ 1.682, which is higher than
V2 ~ 1.414 of Steffensen’s method (1.2), v/4 ~ 1.587 of Ren’s method (1.3).

4 Numerical Results

In this section, all experiments have been carried out on a personal computer equipped
with an Intel(R) Celeron(R) 430 CPU, 1.79 GHz and WinXp 32-bit operating system. Using
the symbolic computation in the programming package Matlab 7.0 Now, Method 1 (M81,
(3.1)) and Method 2 (M82, (3.2)) are employed to solve some nonlinear equations and com-
pared with Steffensen’s method (S2, (1.2)), Ren’s method (R4, (1.3))(8 = 1), Zheng’s method
(78, (1.4)) with v = 1 and Soleymani’s method (S8,(1.5)). Table 1 shows the absolute values
|xg — xp_1|(k = 1,2,---7) and the approximation x,, to a, where a is computed with 2400
significant digits and z,, is calculated by using the same total number of function evaluation
(TNFE) for all methods. The absolute values of function (|f(z,)|) and the computational
order of convergence p are also shown in Table 1. Here, the TNFE for all methods is 12.

The computational order of convergence p [15] is defined by

p= 1n(|(xn+1 - xn)/(xn - xn—l)D{ln(Kxn - xn—l)/(xn—l - $n—2)|)}_1-

Following functions are used:

fi(z) = cos(x) — ze” + 22, a ~ 0.639154, 1,=0.5,

folz) = \/i—l/x—?) a ~ 9.633596, o = 8,

f3(z) = xe” "4z —2, a~ —0.622256, zo=— 0.5,
)=

fa(z) =7 g 41 g~ 1.384123, 2 = L.

On the other hand, in Table 2 the mean elapsed time, after 100 performances of the

program, appears. The stopping criterion used is |7z 1 — x1| + | f(21)] < 1073,

5 Conclusions

By theoretical analysis and numerical experiments, we confirm that the new Steffensen
type methods only use four evaluations of the function per iteration to achieve eighth-order
convergence for solving a simple root of nonlinear functions. The new methods are free from
any derivatives. The efficiency index of the new methods is v/8 ~ 1.682. Table 1 show that
the results of the new methods are similar to that of the other eighth-order optimal methods.
Table 2 show that the new methods require less time to converge than the other optimal
methods. Thus, our methods in this contribution can be considered as improvements of
Steffensen’s method.



212 Journal of Mathematics Vol. 34
Table 1 Comparison of various iterative methods (TNFE=12)
fi(@)  Method |z1 —wo| |z2 —@1| |ez —=®2|  |wa—=23]  |ws —wal  Jwe —ws|  fzr —wel e [f(@n)l
£ S2 12 A7e-1 .34e-3 13e-6 19e-13 40e-27 18e-54 2.0 .43e-54
R4 14 .90e-4 84e-17 126-66 79e-268 4.0 .19e-267
78 14 .83e-8 .30e-65 T7e-525 8.0 .19e-524
S8 14 A7e-4 .25e-37 44¢-300 8.0  .11e-299
M81 14 .67e-8 41e-66 81e-532 8.0  .20e-531
M82 14 Tle-8 70e-66 .68e-530 8.0  .16e-529
fa S2 15 a1 4de-3 Tle-8 18e-17 126-36 .50e-75 2.0 .85e-76
R4 15 10 27e-4 12e-18 56e-76 4.0 .97e-7T
78 1.6 2767 .67e-70 .90e-571 8.0  .15e-571
S8 1.6 .23e-9 14e-88 .34e-722 8.0  .58e-723
M81 1.6 .88e-10 .61e-92 .33e-749 8.0  .56e-750
M82 1.6 21e-7 .16e-70 .20e-575 8.0  .35e-576
s S2 a1 1de-1 21e-3 49e-7 27e-14 78e-29 67e-58 2.0 .25e-57
R4 12 .80e-4 .30e-16 57e-66 78e-265 4.0 .29e-264
78 12 1267 .35e-64 .23e-516 8.0  .89e-516
S8 12 98e-7 .58e-55 .85e-441 8.0 .32e-440
M81 12 10e-7 1le-64 .22e-520 8.0 .82e-520
M82 12 79e-8 14e-65 16e-527 8.0  .62e-527
fa S2 .30 T5e-1 4de-2 15e-4 18e-9 24e-19 46e-39 2.0 .10e-38
R4 .38 61e-2 .866-9 .35e-36 .94e-146 4.0 .21e-145
78 38 13e-4 .79e-40 .20e-321 8.0  .43e-321
S8 .38 .356-3 .36e-27 46e-219 8.0  .10e-218
M81 .38 876-6 .32e-50 13e-405 8.0  .28e-405
M82 .38 .88e-6 .37e-50 .33e-405 8.0 .74e-405
Table 2 Mean e-time in 100 performances of the program.
f =z S2 R4 78 S8 MS81
fi 0.5 3.4844 3.5725 3.2906 7.2666 2.9950
fa 8 1.1819 1.3313 1.4244 14595 1.2161
fs -0.5 21294 1.9991 2.1564 2.0605 1.7789
fi 1 2.4522 2.3692 2.3097 2.4813 2.1044
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