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1 Introduction

In this paper, we consider iterative methods to find a simple root of a nonlinear equation
f(x) = 0, where f : I ⊂ R → R for an open interval I is a scalar function. The classical
Newton’s method [1] with second-order convergence is written as

xn+1 = xn − f(xn)f ′(xn)−1. (1.1)

However, when the first order derivative of the function f(x) is unavailable or is expensive
to compute, the Newton’s method is still restricted in practical applications. In order to
avoid computing the first order derivative, Steffensen [2] proposed the following second-order
method

xn+1 = xn − f(xn)f [xn, zn]−1, (1.2)

where zn = xn + f(xn), and f [· , ·] is the first order divided difference. To improve the local
order of convergence, many high-order methods were proposed in open literatures, see [3–12]
and references therein. Ren et al. [3] proposed the following fourth-order methods

{
yn =xn − f(xn)f [xn, zn]−1,

xn+1 =yn − f(yn)[f [xn, yn] + f [yn, zn]− f [xn, zn] + β(yn − xn)(yn − zn)]−1,
(1.3)
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where zn = xn + f(xn) and β ∈ R is a constant. Zheng et al. [4] presented an eighth-order
method by using the direct Newtonian interpolation, which is given by





yn =xn − f(xn)f [xn, zn]−1,

un =yn − f(yn){f [xn, yn] + f [zn, xn, yn](yn − xn)}−1,

xn+1 =un − f(un){f [un, yn] + f [un, xn, yn](un − yn)

+ f [un, zn, xn, yn](un − yn)(un − xn)}−1,

(1.4)

where zn = xn + γf(xn) and γ ∈ R is a constant. Furthermore, Soleymani et al. [5] also
presented the following eight-order method





yn =xn − f(xn)f [xn, zn]−1,

un =yn − f(yn)f [xn, yn]−1
{
1 + tn + t2n − t3n/2

}
,

xn+1 =un − f(un)f [un, yn]−1
{
1− (f [xn, zn]− 1)−1t2n + (2− f [xn, zn])λn

}
,

(1.5)

where zn = xn − f(xn), tn = f(yn)/f(zn) and λn = f(un)/f(zn). Other Steffensen type
methods and their applications were discussed in [6–12]. All these methods are derivative-
free in per full iteration.

The purpose of this paper is to develop a new family of eighth-order derivative-free
methods and give the convergence analysis. This paper is organized as follows. In Section
2, we present a family of three-step eighth-order iterative methods for solving nonlinear
equations. The new methods are free from any derivatives and require four evaluations of
the function f(x), therefore the new methods have the efficiency index of 4

√
8 ≈ 1.682. The

new methods agree with the conjecture of Kung and Traub [13] for the case n = 4. We prove
that the order of convergence of the new methods is eight for nonlinear equations. In Section
3, we give some specific iterative methods which can be used in practical computations.
Numerical examples are given in Section 4 to illustrate convergence behavior of our methods
for simple roots. Section 5 is a short conclusion.

2 The Methods and Analysis of Convergence

Now, we consider the iteration scheme of the form,




yn =xn − f(xn)f [xn, zn]−1,

un =yn −K(sn, tn)f(yn)f [xn, zn]−1,

xn+1 =un −H(λn)f(un)f ′(un)−1,

(2.1)

where zn = xn+γf(xn), sn = f(yn)/f(xn), tn = f(yn)/f(zn), λn = f(un)/f(zn) and γ ∈ R

is a constant. H(λ) and K(s, t) are some functions of one and two variables, respectively. It
is quite obvious that formula (2.1) requires five functional evaluations per iteration. To derive
a scheme with a higher efficiency index and reduce the number of functional evaluations,
we approximate f ′(un) by considering the approximation of f(x) by a rational nonlinear
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function of the form

φ(x) = {a1 + a2(x− xn)}{1 + a3(x− xn)}−1, (2.2)

where the parameters a1, a2 and a3 are determined by the condition that f and φ coincide
at xn, yn and un. That means φ(x) satisfies the conditions

φ(xn) = f(xn), φ(yn) = f(yn), φ(un) = f(un). (2.3)

From (2.2) and (2.3), we can obtain

a1 = f(xn), (2.4)

a2 = {f [xn, un]f(yn)− f [xn, yn]f(un)}{f(yn)− f(un)}−1, (2.5)

a3 = f [xn, un]− f [xn, yn]{f(yn)− f(un)}−1. (2.6)

Differentiation of (2.2) gives

φ′(x) = (a2 − a1a3)(1 + a3(x− xn))−2. (2.7)

We can now approximate the derivative f ′(x) with the derivative φ′(x) and obtain

f ′(un) ≈ φ′(un). (2.8)

From (2.4) and (2.5)–(2.8), it follows that

f ′(un) ≈ f(xn)f [xn, un]f [un, yn](f(xn)− f(yn))−1f [xn, zn]−1. (2.9)

Substituting (2.9) into (2.1), we obtain a new family of eighth-order methods:




yn =xn − f(xn)f [xn, zn]−1,

un =yn −K(sn, tn)f(yn)f [xn, zn]−1,

xn+1 =un −H(λn)f [xn, zn]f(un)(1− sn){f [un, xn]f [un, yn]}−1.

(2.10)

The functions H(λ) and K(s, t) should be determined so that the iterative method (2.10)
is of the order eight. To do that, we will use the Taylor’s series about (0) for H(λ) and (0, 0)
for K(s, t) thus,

H(λ) = H(0) + H ′(0)λ + · · · , (2.11)

K(s, t) = K(0, 0) + Kss + Ktt + [Ksss
2 + 2Kstst + Kttt

2]/2 + · · · . (2.12)

Here the subscribes denote respective partial derivatives; for example, Kst = ∂2K(s,t)
∂s∂t

∣∣∣
(s,t)=(0,0)

,

etc. Petković et al. [10] proved that the first two steps of (2.10) are fourth order methods with
K(0, 0) = 1, Ks = 1 and Kt = 1. We could find another coefficients H(0), H ′(0), Kss,Kst, Ktt

by Theorem 2.1.
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Theorem 2.1 Let a ∈ I be a simple zero of a sufficiently differentiable function f :
I ∈ R → R for an open interval I. If x0 is sufficiently close to a, then the sequence
{xn} generated by any method of the family (2.10) converges to a. If H(0) = 1, H ′(0) =
1, |H ′′(0)| < ∞,K(0, 0) = 1,Ks = 1, Kt = 1, Kss = 2, Ktt = 2,Kst = 2, then the family of
methods defined by (2.10) is of eighth-order.

Proof Let en = xn − a, cn = (1/n!)f (n)(a)/f ′(a), n = 2, 3, · · · . Using the Taylor
expansion and taking into account f(a) = 0, we have

f(xn) = f ′(a)[en + c2e
2
n + c3e

3
n + c4e

4
n + c5e

5
n + c6e

6
n + O(e7

n)]. (2.13)

From (2.13), noting that zn = xn + γf(xn), we can obtain

f(zn) = f ′(a)[(1 + γf ′(a))en + c2(γf ′(a) + (1 + γf ′(a))2)e2
n

+(c3(γf ′(a) + (1 + γf ′(a))3) + 2γf ′(a)(1 + γf ′(a))c2
2)e

3
n + (c3

2γ
2f ′(a)2

+c2c3γf ′(a)(1 + γf ′(a))(5 + 3γf ′(a))

+c4(γf ′(a) + (1 + γf ′(a))4))e4
n + O(e5

n), (2.14)

f [xn, zn] = f ′(a) + (2 + γf ′(a))c2f
′(a)en + (3c3 + (c2

2 + 3c3)γf ′(a)

+c3γ
2f ′(a)2)f ′(a)e2

n + (c4(4 + 6γf ′(a) + 4γ2f ′(a)2 + γ3f ′(a)3)

+c2c3(4γf ′(a) + 2γ2f ′(a)2))f ′(a)e3
n + O(e4

n), (2.15)

then,
yn − a = Ae2

n + Be3
n + Ce4

n + O(e5
n), (2.16)

where

A = c2(1 + γf ′(a)), (2.17)

B = c3(2 + 3γf ′(a) + γ2f ′(a)2)− c2
2(2 + 2γf ′(a) + γ2f ′(a)2), (2.18)

C = c4(3 + 6γf ′(a) + 4γ2f ′(a)2 + γ3f ′(a)3)− c2c3(7 + 10γf ′(a)

+7γ2f ′(a)2 + 2γ3f ′(a)3) + c3
2(4 + 5γf ′(a) + 3γ2f ′(a)2 + γ3f ′(a)3). (2.19)

With (2.13), (2.14) and (2.16), we have

f(yn) = f ′(a)[yn − a + c2(yn − a)2 + O(e5)]

= f ′(a)[Ae2
n + Be3

n + (C + A2)e4
n + O(e5

n)], (2.20)

sn = f ′(a) + f ′(a)c2en + f ′(a)(c2
2 + c3 + γf ′(a)c2

2)e
2
n + f ′(a)(−2c3

2 + 3c2c3 + c4

−2γf ′(a)c3
2 + 4γf ′(a)c2c3 + (c2c3 − c3

2)γ
2f ′(a)2)e3

n + f ′(a)(4c4
2 − 8c2

2c3 + 2c2
3

+4c4
2 + c5 + γf ′(a)(5c4

2 − 10c2
2c3 + 3c2

3 + 7c2c4) + γ2f ′(a)2(3c4
2 − 7c2

2c3

+c2
3 + 4c2c4) + γ3f ′(a)3(c4

2 − 2c2
2c3 + c2c4))e4

n + O(e5
n), (2.21)

tn = (1 + γf ′(a))c2en + (−3c2
2 + 2c3 + γf ′(a)(3c3 − 3c2

2)

+γ2f ′(a)2(c3 − c2
2))e

2
n + (8c3

2 − 10c2c3 + 3c4 + γf ′(a)(10c3
2 − 14c2c3 + 6c4)

+(5c3
2 − 8c2c3 + 4c4)γ2f ′(a)2 + γ3f ′(a)3(c3

2 − 2c2c3 + c4))e3
n
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+(−20c4
2 + 37c2

2c3 − 8c2
3 − 14c2c4 + 4c5 + γf ′(a)

(60c2
2c3 − 30c4

2 − 15c2
3 − 25c2c4 + 10c5) + γ2f ′(a)2(44c2

2c3 − 20c4
2 − 13c2

3 − 20c2c4 + 10c5)

+γ3f ′(a)3(17c2
2c3 − 7c4

2 − 6c2
3 − 9c2c4 + 5c5)

+γ4f ′(a)4(3c2
2c3 − c4

2 − c2
3 − 2c2c4 + c5))e4

n + O(e5
n). (2.22)

Using the Taylor expansion (2.12) with K(0, 0) = Ks = Kt = 1, we get

K(sn, tn) = 1 + sn + tn + [Ksss
2
n + 2Kstsntn + Kttt

2
n]/2 + O(e5

n). (2.23)

Together with (2.15)–(2.23), we have

un − a = De4
n + Ee5

n + O(e6
n), (2.24)

where

D = −1/2c2(1 + γf ′(a))(2c3(1 + γf ′(a)) + c2
2(−10 + Ktt + 2Kst + Kss

+γf ′(a)(−10 + 2Kst + 2Kss) + γ2f ′(a)2(−2 + Kss)), (2.25)

E = 1/2(−2c2c4(1 + γf ′(a))2(2 + γf ′(a))− 2c2
3(2 + γf ′(a))(1 + γf ′(a))2

−c2
2c3(1 + γf ′(a))(−64 + 6Ktt + γf ′(a)(15Kss − 92) + γ2f ′(a)2(−44 + 12Kss)

+γ3f ′(a)3(−6 + 3Kss) + 3Ktt(2 + γf ′(a)) + 6Kst(2 + 3γf ′(a) + γ2f ′(a)2))

+c4
2(−72 + 10Kss + γf ′(a)(−160 + 31Kss) + γ2f ′(a)2(−132 + 36Kss)

+γ3f ′(a)3(−48 + 19Kss) + γ4f ′(a)4(−6 + 4Kss) + Ktt(10 + 15γf ′(a) + 6γ2f ′(a)2)

+2Kst(10 + 23γf ′(a) + 18γ2f ′(a)2 + 5γ3f ′(a)3)))e5
n + O(e6

n). (2.26)

Using (2.13), (2.14), (2.16), (2.20) and (2.24), we have

f(un) = f ′(a)(De4
n + Ee5

n + O(e6
n)), (2.27)

f [xn, un] = f ′(a)[1 + c2en + c3e
2
n + c4e

3
n + (c5 + c2D)e4

n + O(e5
n)], (2.28)

f [un, yn] = f ′(a)[1 + c2Ae2
n + c2Be3

n + ((C + D)c2 + c3A
2)e4

n + O(e5
n)], (2.29)

f [un, a] = f ′(a) + f ′′(a)(un − a)/2 + O(e6
n)

= f ′(a)[1 + c2De4
n + c2Ee5

n + O(e6
n)], (2.30)

λn = D(1 + γf ′(a))−1e3
n + [E(1 + γf ′(a))

−c2D(1 + 3γf ′(a) + γ2f ′(a)2)](1 + γf ′(a))−2e4
n + O(e5

n). (2.31)

With (2.15), (2.21), and (2.28)–(2.30), we have

(1− sn)f [un, a]f [xn, zn]
f [un, xn]f [un, yn]

= 1 + (c3 − c2
2)Ae3

n + (c3
2(2 + 3γf ′(a) + γ2f ′(a)2)

+c2(c4 −D + c4γf ′(a)) + c4
2(3 + 3γf ′(a) + γ2f ′(a)2)

−c2
2c3(6 + 7γf ′(a) + 2γ2f ′(a)2))e4

n + O(e5
n). (2.32)
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Hence, together with (2.11), (2.24) and (2.32), we obtain

en+1 = (un − a)
(
1−H(0) + ((c3 − c2

2)AH(0)−DH ′(0){1 + γf ′(a)}−1)e3
n

+(−(c2(c4 −D + c4γf ′(a)) + c2
3(2 + 3γf ′(a) + γ2f ′(a)2) + c4

2(3 + 3γf ′(a)

+γ2f ′(a)2)− c2
2c3(6 + 7γf ′(a) + 2γ2f ′(a)2))H(0) + H ′(0)[c2D(1 + 3γf ′(a)

+γ2f ′(a)2)− (1 + γf ′(a))E](1 + γf ′(a))−2)e4
n + O(e5

n)
)
. (2.33)

Now, using (2.33) with H(0) = 1, H ′(0) = 1,K(0, 0) = 1,Ks = 1,Kt = 1,Kss = 2,Ktt = 2
and Kst = 2, we obtain the error equation

en+1 = (1 + γf ′(a))2c2
2(c3 − c2

2)[(4c2c3 − c4)(1 + γf ′(a))2

+c3
2(5 + 6γf ′(a) + 3γ2f ′(a)2 + γ3f ′(a)3)]e8

n + O(e9
n). (2.34)

This means that the convergence order of any method of family (2.10) is eighth-order, when
K(0, 0) = Ks = Kt = 1, Kss = Ktt = Kst = 2, H(0) = H ′(0) = 1, and |H ′′(0)| < ∞. The
proof is completed.

3 The Concrete Iterative Methods

The functions H(λ) and K(s, t) can take many forms satisfying the conditions of The-
orem 2.1. In order to reduce the computational cost, we should choose H(λ) and K(s, t) as
simple as possible. In what follows, we give some iterative forms:

H1(λ) = 1 + λ + ηλ2, H2(λ) = {1 + λ(η + 1)}(1 + ηλ)−1, η ∈ R,

K1(s, t) = (1− s− t)−1, K2(s, t) = 1 + s + t + (s + t)2.

Method 1 Taking H1(λ)(η = 0) and K1(s, t) into the iterative formula (2.10), we get
a family of eighth-order methods





yn =xn − f(xn)f [xn, zn]−1,

un =yn − (1− sn − tn)−1
f(yn)f [zn, xn]−1,

xn+1 =un − (1 + λn) (1− sn) f [xn, zn]f(un){f [un, xn]f [un, yn]}−1,

(3.1)

where zn = xn + γf(xn), sn = f(yn)
f(xn)

, tn = f(yn)
f(zn)

, λn = f(un)
f(zn)

, and γ ∈ R is a constants.
Method 2 Taking H2(λ)(η = −1) and K2(s, t) into the iterative formula (2.10), we

get another family of eighth-order methods




yn =xn − f(xn)f [xn, zn]−1,

un =yn −
(
1 + sn + tn + (sn + tn)2

)
f(yn)f [zn, xn]−1,

xn+1 =un − f(zn)f(un) (1− sn) f [xn, zn]{f [un, xn]f [un, yn](f(zn)− f(un))}−1,

(3.2)

where zn = xn + γf(xn), sn = f(yn)
f(xn)

, tn = f(yn)
f(zn)

, λn = f(un)
f(zn)

, and γ ∈ R is a constants.
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In terms of computational cost, the developed methods require evaluations of four func-
tions per iteration. Consider the definition of efficiency index [14] as p1/w, where p is the
order of the method and w is the number of function evaluations per iteration required by
the method. The new methods have the efficiency index of 4

√
8 ≈ 1.682, which is higher than√

2 ≈ 1.414 of Steffensen’s method (1.2), 3
√

4 ≈ 1.587 of Ren’s method (1.3).

4 Numerical Results

In this section, all experiments have been carried out on a personal computer equipped
with an Intel(R) Celeron(R) 430 CPU, 1.79 GHz and WinXp 32-bit operating system. Using
the symbolic computation in the programming package Matlab 7.0 Now, Method 1 (M81,
(3.1)) and Method 2 (M82, (3.2)) are employed to solve some nonlinear equations and com-
pared with Steffensen’s method (S2, (1.2)), Ren’s method (R4, (1.3))(β = 1), Zheng’s method
(Z8, (1.4)) with γ = 1 and Soleymani’s method (S8,(1.5)). Table 1 shows the absolute values
|xk − xk−1|(k = 1, 2, · · · 7) and the approximation xn to a, where a is computed with 2400
significant digits and xn is calculated by using the same total number of function evaluation
(TNFE) for all methods. The absolute values of function (|f(xn)|) and the computational
order of convergence ρ are also shown in Table 1. Here, the TNFE for all methods is 12.
The computational order of convergence ρ [15] is defined by

ρ ≈ ln(|(xn+1 − xn)/(xn − xn−1)|){ln(|(xn − xn−1)/(xn−1 − xn−2)|)}−1.

Following functions are used:

f1(x) = cos(x)− xex + x2, a ≈ 0.639154, x0=0.5,

f2(x) =
√

x− 1/x− 3, a ≈ 9.633596, x0 = 8,

f3(x) = xex3 − 4x− 2, a ≈ −0.622256, x0=− 0.5,

f4(x) = ln(−x2+x+2)−x + 1, a ≈ 1.384123, x0 = 1.

On the other hand, in Table 2 the mean elapsed time, after 100 performances of the
program, appears. The stopping criterion used is |xk+1 − xk|+ |f(xk)| < 10−300.

5 Conclusions

By theoretical analysis and numerical experiments, we confirm that the new Steffensen
type methods only use four evaluations of the function per iteration to achieve eighth-order
convergence for solving a simple root of nonlinear functions. The new methods are free from
any derivatives. The efficiency index of the new methods is 4

√
8 ≈ 1.682. Table 1 show that

the results of the new methods are similar to that of the other eighth-order optimal methods.
Table 2 show that the new methods require less time to converge than the other optimal
methods. Thus, our methods in this contribution can be considered as improvements of
Steffensen’s method.
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Table 1 Comparison of various iterative methods (TNFE=12)
fi(x) Method |x1 − x0| |x2 − x1| |x3 − x2| |x4 − x3| |x5 − x4| |x6 − x5| |x7 − x6| ρ |f(xn)|

f1 S2 .12 .17e-1 .34e-3 .13e-6 .19e-13 .40e-27 .18e-54 2.0 .43e-54

R4 .14 .90e-4 .84e-17 .12e-66 .79e-268 4.0 .19e-267

Z8 .14 .83e-8 .30e-65 .77e-525 8.0 .19e-524

S8 .14 .17e-4 .25e-37 .44e-300 8.0 .11e-299

M81 .14 .67e-8 .41e-66 .81e-532 8.0 .20e-531

M82 .14 .71e-8 .70e-66 .68e-530 8.0 .16e-529

f2 S2 1.5 .11 .44e-3 .71e-8 .18e-17 .12e-36 .50e-75 2.0 .85e-76

R4 1.5 .10 .27e-4 .12e-18 .56e-76 4.0 .97e-77

Z8 1.6 .27e-7 .67e-70 .90e-571 8.0 .15e-571

S8 1.6 .23e-9 .14e-88 .34e-722 8.0 .58e-723

M81 1.6 .88e-10 .61e-92 .33e-749 8.0 .56e-750

M82 1.6 .21e-7 .16e-70 .20e-575 8.0 .35e-576

f3 S2 .11 .14e-1 .21e-3 .49e-7 .27e-14 .78e-29 .67e-58 2.0 .25e-57

R4 .12 .80e-4 .30e-16 .57e-66 .78e-265 4.0 .29e-264

Z8 .12 .12e-7 .35e-64 .23e-516 8.0 .89e-516

S8 .12 .98e-7 .58e-55 .85e-441 8.0 .32e-440

M81 .12 .10e-7 .11e-64 .22e-520 8.0 .82e-520

M82 .12 .79e-8 .14e-65 .16e-527 8.0 .62e-527

f4 S2 .30 .75e-1 .44e-2 .15e-4 .18e-9 .24e-19 .46e-39 2.0 .10e-38

R4 .38 .61e-2 .86e-9 .35e-36 .94e-146 4.0 .21e-145

Z8 .38 .13e-4 .79e-40 .20e-321 8.0 .43e-321

S8 .38 .35e-3 .36e-27 .46e-219 8.0 .10e-218

M81 .38 .87e-6 .32e-50 .13e-405 8.0 .28e-405

M82 .38 .88e-6 .37e-50 .33e-405 8.0 .74e-405

Table 2 Mean e-time in 100 performances of the program.
f x0 S2 R4 Z8 S8 M81

f1 0.5 3.4844 3.5725 3.2906 7.2666 2.9950
f2 8 1.1819 1.3313 1.4244 1.4595 1.2161
f3 -0.5 2.1294 1.9991 2.1564 2.0605 1.7789
f4 1 2.4522 2.3692 2.3097 2.4813 2.1044
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[15] Cordero A, Torregrosa J R. Variants of Newton’s method using fifth-order quadrature formulas [J].

Appl. Math. Comput., 2007, 190(1): 686–698.

求解非线性方程的最优8阶史蒂芬森方法

王晓锋 1,2 ,张 铁 2

(1. 渤海大学数理学院 ,辽宁锦州 121013)

(2. 东北大学理学院 ,辽宁沈阳 110819)

摘要: 本文研究了非线性方程求根问题. 利用权函数方法, 获得了一种三步8阶收敛的史蒂芬森型方

法. 实验结果表明本文提出的方法计算时间少于其它同阶的最优方法.
关键词: 史蒂芬森法; 无导数; 8阶收敛
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