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Abstract: In this paper, we study a new mean value problem related to the Dedekind sums.

By using the properties of character sum and the analytic method, we get two interesting mean

value formulae for it.
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1 Introduction

For a positive integer k and an arbitrary integer h, the classical Dedekind sums S(h, k)
is defined by

S(h, k) =
k∑

a=1

((
a

k
))((

ah

k
)),

where

((x)) =

{
x− [x]− 1

2
, if x is not an integer;

0, if x is an integer.

The various properties of S(h, k) were investigated by many authors, see [2–4, 7–9]. For
example, Carlitz [3] obtained a reciprocity theorem of S(h, k). Conrey et al. [4] studied
the mean value distribution of S(h, k), and proved the following important and interesting
asymptotic formula

k∑′

h=1

|S(h, k)|2m = fm(k)(
k

12
)2m + O((k

9
5 + k2m−1+ 1

m+1 ) log3 k), (1.1)

where
∑′

h

denotes the summation over all h such that (k, h) = 1, and

∞∑
n=1

fm(n)
ns

= 2
ζ2(2m)
ζ(4m)

· ζ(s + 4m− 1)
ζ2(s + 2m)

ζ(s),
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ζ(s) is the Riemann zeta-function.
Jia [7] improved the error term in (1.1) as O(k2m−1), provide m ≥ 2. Zhang [9] improved

the error term of (1.1) for m = 1. That is, he proved the following asymptotic formula

k∑′

h=1

|S(h, k)|2 =
5

144
kφ(k) ·

∏

pα‖k
((1 +

1
p
)2 − 1

p3α+1
)

∏

p|k
(1 +

1
p

+
1
p2

)
+ O(k exp(

4 ln k

ln ln k
)),

where pα‖k denotes that pα|k and pα+1 † k and exp(y) = ey.
Liu and Zhang [11] studied the hybrid mean value involving Dedekind sums and Kloost-

erman sums K(m,n; q), which defined as follows (see [5] and [6]):

K(m,n; q) =
q∑′

b=1

e(
mb + nb̄

q
),

where e(y) = e2πiy, b denotes the solution of the equation x · b ≡ 1 mod q. They proved the
following conclusion:

Let q be a square-full number (i.e., p | q if and only if p2 | q), then we have

q∑′

a=1

q∑′

b=1

K(m,a; q)K(m, b; q)S(ab, q) =
1
12
· q · φ2(q)

∏

p|q
(1 +

1
p
),

where
q∑′

a=1

denotes the summation over all 1 ≤ a ≤ q such that (a, q) = 1,
∏

p|q
denotes the

product over all distinct prime divisors p of q, φ(q) is the Euler function, and f(n) denotes
the complex conjugation of f(n).

In this paper, we use the analytic methods and mean value theorem of Dirichlet L-
functions to study the hybrid mean value properties involving Dedekind sums and Legendre’s
symbol, and prove some new identities and asymptotic formulae. That is, we shall prove the
following several conclusions:

Theorem 1.1 Let p be an odd prime with p ≡ 3 mod 4, then we have the identity

p−1∑
a=1

p−1∑
b=1

(
a + 1

p
)(

b + 1
p

)S(ab, p) =
(p− 1)(p− 2)

12
− h2

p,

where hp denotes the class number of the quadratic field Q(
√−p).

Theorem 1.2 Let p be an odd prime with p ≡ 1 mod 4, then for any positive integer
k, we have the identity

p−1∑
a=1

p−1∑
b=1

(
a + 1

p
)(

b + 1
p

)S2k−1(ab, p) =
p · (p− 1)2k−1 · (p− 2)2k−1

(12p)2k−1
.
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Theorem 1.3 Let p be an odd prime, then we have the asymptotic formulae:

(A)
p−1∑
a=1

p−1∑
b=1

(a+1
p

)( b+1
p

)S2(ab, p) = p2·(p−11)
144

+ O(p · exp( 4 ln p
ln ln p

)), if p ≡ 3 mod 4.

(B)
p−1∑
a=1

p−1∑
b=1

(a+1
p

)( b+1
p

)S2(ab, p) = p2·(p−11−C1)
144

+ O(p · exp( 4 ln p
ln ln p

)), if p ≡ 1 mod 4, where

C1 = 4π4

5

∏∗

q

(q2 + 1)2

(q2 − 1)2
is a constant,

∏∗

q

denotes the product over all primes q such that

( q
p
) = 1, and exp(y) = ey.

As an application of Theorem 1.1 (of course, one can also give a proof directly), we can
give an interesting computational formula for hp, which we described as following:

Corollary 1.4 Let p be an odd prime with p ≡ 3 mod 4, then we have the computational
formula

hp =

{
p−1∑
a=1

S(a2, p)

} 1
2

= 2

p−1
2∑

a=1

[
a2

p
]− (p− 1)(p− 5)

12
=

p− 1
2

− 2
p

p−1
2∑

i=1

ri,

where [x] denotes the greatest integer ≤ x, ri (i = 1, 2, · · · , p−1
2

) denotes all quadratic
residues mod p in the interval [1, p− 1].

2 Some Lemmas

In this section, we shall give some lemmas which are necessary in the proof of our
theorems. First we have the following:

Lemma 2.1 Let q > 2 be an integer, then for any integer a with (a, q) = 1, we have
the identity

S(a, q) =
1

π2q

∑

d|q

d2

φ(d)

∑
χ mod d

χ(−1)=−1

χ(a)|L(1, χ)|2,

where φ(n) is the Euler function,
∑

χ mod d

χ(−1)=−1

denotes the summation over all odd character

modulo d, L(s, χ) denotes the Dirichlet L-function corresponding to χ modulo d.
Lemma 2.2 Let p be an odd prime, then we have the asymptotic formulae

(I)
∑

χ mod p

χ(−1)=−1

|L(1, χ)|4 =
5π4

144
· p + O(exp(

4 ln p

ln ln p
));

(II)
∑

χ mod p

χ(−1)=−1

|L(1, χ)|2 · |L(1, χχ2)|2 = C1 · p + O(exp(
4 ln p

ln ln p
)),

where C1 = π4

180

∏∗

q

(q2 + 1)2

(q2 − 1)2
is a constant,

∏∗

q

denotes the product over all primes q such

that ( q
p
) = 1.

Proof In fact Lemma 2.1 and Lemma 2.2 are two early results of the second author,
their proof can be find in references [8] and [10].
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Lemma 2.3 Let p be an odd prime, then for any non-real character χ mod p, we have

the identity |
p−1∑
a=1

(a+1
p

)χ(a)| = √
p, where (∗

p
) is the Legendre’s symbol.

Proof Since χ2 is a primitive character mod p, so from the properties of Gauss sums
τ(χ) we have

p−1∑
a=1

(
a + 1

p
)χ(a) =

1
τ(χ2)

p−1∑
a=1

χ(a)
p−1∑
b=1

χ2(b) e(
b(a + 1)

p
)

=
1

τ(χ2)

p−1∑
b=1

χ2(b)χ(b) e(
b

p
)

p−1∑
a=1

χ(ab) e(
ab

p
)

=
1

τ(χ2)

p−1∑
b=1

χ2(b)χ(b) e(
b

p
)

p−1∑
a=1

χ(a) e(
a

p
) =

τ(χ) · τ(χχ2)
τ(χ2)

, (2.1)

where χ2 = (∗
p
) is the Legendre’s symbol.

Now Lemma 2.3 follows from (2.1) and the identity | τ(χ) |= √
p, if χ is not a principal

character mod p.

3 Proof of Theorems

In this section, we shall complete the proof of our theorems. First we prove Theorem
1.1. For odd prime p, from Lemma 2.1 and the definition of S(a, p) we have

S(a, p) =
p

π2(p− 1)

∑
χ mod p

χ(−1)=−1

χ(a)|L(1, χ)|2 (3.1)

and

∑
χ mod p

χ(−1)=−1

|L(1, χ)|2 =
π2(p− 1)2(p− 2)

12p2
. (3.2)

Then from (3.1) and Lemma 2.3 we have

p−1∑
a=1

p−1∑
b=1

(
a + 1

p
)(

b + 1
p

)S(ab, p)

=
p

π2(p− 1)

∑
χ mod p

χ(−1)=−1

|
p−1∑
a=1

(
a + 1

p
)χ(a)|2 · |L(1, χ)|2

=
p

π2(p− 1)

∑
χ mod p

χ(−1)=−1

|τ(χ) · τ(χχ2)
τ(χ2)

|2 · |L(1, χ)|2. (3.3)
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If p ≡ 3 mod 4, then χ2(−1) = −1, so for χ = χ2, χχ2 is the principal character mod p and
|τ(χχ2)| = 1. Note that L(1, χ2) = πhp/

√
p, from (3.2), (3.3) and Lemma 2.3 we have

p−1∑
a=1

p−1∑
b=1

(
a + 1

p
)(

b + 1
p

)S(ab, p) =
p

π2(p− 1)
[

∑
χ mod p

χ(−1)=−1

p|L(1, χ)|2 − (p− 1)|L(1, χ2)|2]

=
(p− 1)(p− 2)

12
− p

π2
|L(1, χ2)|2 =

(p− 1)(p− 2)
12

− h2
p.

This proves Theorem 1.1.
Now we prove Theorem 1.2. If p ≡ 1 mod 4, then χ2(−1) = 1, so for any odd character

χ, χχ2 is not the principal character mod p. This time, from the properties of Gauss sums,
(3.1), (3.2) and Lemma 2.3 we have

p−1∑
a=1

p−1∑
b=1

(
a + 1

p
)(

b + 1
p

)S2k−1(ab, p) = (
p

π2(p− 1)
)2k−1 · p · (

∑
χ mod p

χ(−1)=−1

|L(1, χ)|2)2k−1

= (
p

π2(p− 1)
)2k−1 · p · (π2(p− 1)2 · (p− 2)

12p2
)2k−1 =

p · (p− 1)2k−1 · (p− 2)2k−1

(12p)2k−1
.

This proves Theorem 1.2.
To prove Theorem 1.3. First from (3.1) and Lemma 2.3 we have

p−1∑
a=1

p−1∑
b=1

(
a + 1

p
)(

b + 1
p

)S2(ab, p)

=
p2

π4(p− 1)2
∑

χ mod p

χ(−1)=−1

∑
λ mod p

λ(−1)=−1

|
p−1∑
a=1

(
a + 1

p
)χ(a)λ(a)|2 · |L(1, χ)|2|L(1, λ)|2

=
p2

π4(p− 1)2
∑

χ mod p

χ(−1)=−1

∑
λ mod p

λ(−1)=−1

|τ(χλ) · τ(χλχ2)
τ(χ2)

|2 · |L(1, χ)|2 · |L(1, λ)|2. (3.4)

If p ≡ 3 mod 4, then χ2 is an odd character mod p, and χλ is an even character mod p.
So χλχ2 is not a principal character mod p. From (3.4), Lemma 2.2 and the properties of
Gauss sums we have

p−1∑
a=1

p−1∑
b=1

(
a + 1

p
)(

b + 1
p

)S2(ab, p)

=
p2

π4(p− 1)2
[p · (

∑
χ mod p

χ(−1)=−1

| L(1, χ) |2)2 −
∑

χ mod p

χ(−1)=−1

(p− 1)|L(1, χ)|4]

=
(p− 1)2(p− 2)2

144p
− p2

π4(p− 1)

∑
χ mod p

χ(−1)=−1

|L(1, χ)|4 =
p2 · (p− 11)

144
+ O(p · exp(

4 ln p

ln ln p
)).

(3.5)
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If p ≡ 1 mod 4, then χ2 is an even character mod p, this time we have

p−1∑
a=1

p−1∑
b=1

(
a + 1

p
)(

b + 1
p

)S2(ab, p)

=
p2

π4(p− 1)2
[p · (

∑
χ mod p

χ(−1)=−1

| L(1, χ) |2)2 − (p− 1)
∑

χ mod p

χ(−1)=−1

|L(1, χ)|4]

− p2

π4(p− 1)

∑
χ mod p

χ(−1)=−1

|L(1, χ)|2 · |L(1, χχ2)|2

=
p2 · (p− 11)

144
− C · p2 + O(p · exp(

4 ln p

ln ln p
)), (3.6)

where C = π4

180

∏∗

q

(q2 + 1)2

(q2 − 1)2
is a constant,

∏∗

q

denotes the product over all primes q such

that ( q
p
) = 1.

Now Theorem 1.3 follows from asymptotic formulae (3.5) and (3.6).
Using Lemma 2.1 we can also give a direct proof of Corollary 1.4. In fact if p ≡ 3 mod 4,

then (−1
p

) = −1, so from Lemma 2.1 and note that the orthogonality of characters mod p,
we have

p−1∑
a=1

S(a2, p) =
p

π2(p− 1)

∑
χ mod p

χ(−1)=−1

p−1∑
a=1

χ2(a)|L(1, χ)|2

=
p

π2(p− 1)
· (p− 1) · |L(1, χ2)|2 = h2

p . (3.7)

On the other hand, note that ((−x)) = −((x)) and the set {12, 22, · · · , (p−1)2

4
,

−12, −22, · · · , − (p−1)2

4
} is a reduced residue system mod p, so from the definition of

S(a, p) we have

p−1∑
a=1

S(a2, p) =
p−1∑
a=1

{
p−1
2∑

b=1

((
b2

p
))(

b2a2

p
)) +

p−1
2∑

b=1

((
−b2

p
))((

−b2a2

p
))}

= 2

p−1
2∑

b=1

((
b2

p
))

p−1∑
a=1

((
b2a2

p
)) = 4(

p−1
2∑

b=1

((
b2

p
)))2

= 4(

p−1
2∑

b=1

b2

p
− 1

2

p−1
2∑

b=1

1−
p−1
2∑

b=1

[
b2

p
])2 = 4(

(p− 1)(p− 5)
24

−
p−1
2∑

b=1

[
b2

p
])2. (3.8)

Combining (3.7) and (3.8) we may immediately deduce the identity

hp = {
p−1∑
a=1

S(a2, p)} 1
2 = 2

p−1
2∑

a=1

[
a2

p
]− (p− 1)(p− 5)

12
.
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This completes the proof of our conclusions.
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关于Dedekind和的一些恒等式

陈国慧1 ,刘宝利2

(1.海南师范大学数学与统计学院, 海南海口 571158)

(2.西安航空职业技术学院基础部, 陕西阎良 710089)

摘要: 本文研究了关于Dedekind和的一个新的均值问题. 利用特征和的性质以及解析的方法, 获得了

两个有趣的均值公式.
关键词: Dedekind 和; 均值公式; 恒等式
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