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Abstract: In this paper, we study equivariant cobordism classification of small covers. By

using characteristic and Stong homomorphism, we determine the number of equivariant cobordism

classes of small covers over products of a simplex with 3-cube, which extends the existing related

result in literature.
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1 Introduction

The notion of small covers was first introduced by Davis and Januszkiewicz [1], where a
small cover is a smooth closed manifold Mn with a locally standard (Z2)n-action such that its
orbit space is a simple convex polytope. For instance, the n-dimensional real projective space
RP n with a natural (Z2)n-action is a small cover over an n-simplex. In recent years, several
studies attempted to enumerate the number of Davis-Januszkiewicz equivalence classes and
equivariant homeomorphism classes of small covers over a specific polytope, see [2–6].

ByMn we denote the set of equivariant unoriented cobordism classes of all n-dimensional
small covers. Let M∗ =

∑
n≥1

Mn. From [7, Theorems 1.4, 1.5, Corollary 5.8], M∗ is gen-

erated by the classes of small covers over the product of simplices. When the dimension of
each simplex is 1 or when the number of simplices is at most 3, we determine the number
of small covers over the product of simplices up to equivariant cobordism [8]. In 2008, Wu
determined equivariant cobordism classificaton of small covers over 3-dimensional prisms [9].

Let ∆m, I3 be m-simplex and 3-cube, respectively. The main results of this paper are
stated as follows:

∗ Received date: 2012-10-27 Accepted date: 2013-01-22

Foundation item: Supported by National Natural Science Foundation of China (11201126;

10971050); The Basic Science and Technological Frontier Project of Henan (122300410414;

132300410432); The research program for scientific technology of Henan province (13A110540).

Biography: Chen Yanchang (1980–), male, born at Hengshui, Hebei, associate professor, major in

algebraic topology and differential topology. E–mail:cyc810707@163.com.



192 Journal of Mathematics Vol. 34

Theorem 1 When m ≥ 2, the number of equivariant cobordism classes of small covers
over ∆m × I3 is

m+3∏
t=1

(2m+3 − 2t−1)

48(m + 1)!
(25 · 23m − 9 · 22m+2 + 6 · 2m+1 − 1) + 1.

All small covers over ∆1 × I3 equivariantly bound.
The paper is organized as follows. In Section 2, we review some basic facts about small

covers and the tangential representation. In Section 3, using characteristic functions and
Stong homomorphism, we prove Theorem 1.

2 Preliminaries

An n-dimensional convex polytope P n is said to be simple, if exactly n faces of codi-
mension one meet at each of its vertices. An n-dimensional smooth closed manifold Mn is
said to be a small cover if it admits a smooth (Z2)n-action such that the action is locally
isomorphic to a standard action of (Z2)n on Rn and the orbit space Mn/(Z2)n is a simple
convex polytope of dimension n.

Suppose that π : Mn → P n is a small cover over a simple convex polytope P n. Let
F(P n) = {F1, · · · , F`} be the set of codimension-one faces (facets) of P n. Then there are `

connected submanifolds π−1(F1), · · · , π−1(F`). Each submanifold π−1(Fi) is fixed pointwise
by a Z2-subgroup Z2(Fi) of (Z2)n, so that each facet Fi corresponds to the Z2-subgroup
Z2(Fi). Obviously, the Z2-subgroup Z2(Fi) actually agrees with an element νi in (Z2)n

as a vector space. For each face F of codimension u, since P n is simple, there are u

facets Fi1 , · · · , Fiu
such that F = Fi1

∩ · · · ∩ Fiu
. Then, the corresponding submani-

folds π−1(Fi1), · · · , π−1(Fiu
) intersect transversally in the (n − u)-dimensional submanifold

π−1(F ), and the isotropy subgroup Z2(F ) of π−1(F ) is a subtorus of rank u and is generated
by Z2(Fi1), · · · ,Z2(Fiu

) (or is determined by νi1 , · · · , νiu
in (Z2)n). Thus, this actually gives

a characteristic function [1]

λ : F(P n) −→ (Z2)n

defined by λ(Fi) = νi such that whenever the intersection Fi1
∩ · · · ∩ Fiu

is non-empty,
λ(Fi1), · · · , λ(Fiu

) are linearly independent in (Z2)n.
In fact, Davis and Januszkiewicz gave a reconstruction process of a small cover by

using a characteristic function λ : F(P n) −→ (Z2)n. Let Z2(Fi) be the subgroup of (Z2)n

generated by λ(Fi). Given a point p ∈ P n, by F (p) we denote the minimal face containing
p in its relative interior. Assume F (p) = Fi1

∩ · · · ∩ Fiu
and Z2(F (p)) =

⊕u

j=1 Z2(Fij
). Note

that Z2(F (p)) is a u-dimensional subgroup of (Z2)n. Let M(λ) denote P n× (Z2)n/ ∼, where
(p, g) ∼ (q, h) if p = q and g−1h ∈ Z2(F (p)). The free action of (Z2)n on P n×(Z2)n descends
to an action on M(λ) with quotient P n. Thus M(λ) is a small cover over P n [1].

By Λ(P n) we denote the set of all characteristic functions on P n. Then we have
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Theorem 2.1 Let π : Mn → P n be a small cover over a simple convex polytope
P n. Then all small covers over P n are given by {M(λ)|λ ∈ Λ(P n)} from the viewpoint of
cobordism.

Remark 1 Generally speaking, we can’t make sure that there always exist small covers
over a simple convex polytope P n when n ≥ 4. For example, see [1, Nonexample 1.22]. From
[1], RP m is a small cover over ∆m, and the 3-dimensional torus T 3 is a small cover over I3.
Thus, RP m × T 3 is a small cover over ∆m × I3.

Next we recall some results in [10]. Let G = (Z2)n and ρ0 be the trivial element
in Hom(G,Z2) (the set of all homomorphisms from G to Z2). The irreducible real G-
representations are all one-dimensional and correspond to all elements in Hom(G,Z2). Given
an element β of Mn, let (Mn, φ) be a representative of β such that Mn is a small cover.
Take an isolated point p in the fixed point set (Mn)G, then the G-representation at p can
be written as τp(Mn) =

⊕
ρ6=ρ0

λ
qρ
ρ , where λρ : G × R −→ R, (g, x) 7→ ρ(g) · x with ρ ∈

Hom(G,Z2) is the irreducible real G-representation and Σρ6=ρ0qρ = n and if qρ 6= 0, then
qρ = 1.NMn = {[τp(Mn)]|p ∈ (Mn)G} is called the tangential representation set of (Mn, φ),
where by [τp(Mn)] we denote the isomorphism class of τp(Mn).

The homomorphisms ρi : (g1, · · · , gn) 7−→ gi form a standard basis of Hom(G,Z2). Let
Rn(G) denote the vector space over Z2 generated by the representation classes of dimension n.
Then R∗(G) =

∑
n≥0 Rn(G) is isomorphic to the graded polynomial algebra Z2[ρ1, · · · , ρn].

Each [τp(Mn)] of NMn uniquely corresponds to a monomial of degree n in Z2[ρ1, · · · , ρn]
such that all n factors of the monomial form a basis of Hom(G,Z2). In [11], Stong showed
that the natural homomorphism (Stong homomorphism) δn : Mn −→ Rn(G) defined by

δn([Mn, φ]) =
∑

p∈(Mn)G

[τp(Mn)]

is a monomorphism. This implies that for each β inMn, there exists a representative (Mn, φ)
of β such that NMn is prime (i.e., either all elements of NMn are distinct or NMn is empty)
andNMn is independent of the choice of representatives of β. Thus we can define Nβ := NMn .
Obviously we have β1 = β2 ⇐⇒ Nβ1 = Nβ2 , for β1, β2 ∈Mn.

Let π : Mn → P n be a small cover over a simple convex polytope P n. The set of
the vertices of P n is just the image of (Mn)G under the map π. Let E denote an edge
(1-dimensional face) of P n, then π−1(E) is a connected 1-dimensional G-submanifold of Mn

by [1, Lemma 1.3]. For p ∈ (Mn)G and π(p) ∈ E, p is also a fixed point of this submanifold.
We have a 1-dimensional real tangential representation τp(π−1(E)) of G at p. Suppose that
Ei1 , · · · , Ein

are the n edges that meet at π(p). Then
⊕n

k=1 τp(π−1(Eik
)) just gives τp(Mn).

The isotropy group of π−1(E) is of rank n-1. Thus the tangential representation τp(π−1(E))
is determined by the vector orthogonal to the isotropy group (regarded as a subspace of
(Z2)n). Each edge is the intersection of n-1 facets. Suppose E =

⋂n−1

k=1 Fjk
, where Fjk

denotes a facet. The vectors λ(Fjk
), k = 1, · · · , n− 1, span the isotropy group of π−1(E). So

the characteristic function uniquely determines the tangential representation τp(Mn).
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3 The Number of Small Covers

Let e1, e2, · · · , em+3 be the standard basis of (Z2)m+3. Using characteristic functions
and Stong homomorphism, we give the proof of Theorem 1.

The Proof of Theorem 1 When m = 1, ∆m × I3 = I4. From [8], all small covers
over I4 equivariantly bound. We shall be particularly concerned with the case m ≥ 2.

In fact, ∆m× I3 = ∆m× I × I × I. To be convenient, we introduce the following marks.
By F ′

1, · · · , F ′
m+1 we denote all facets of m-simplex ∆m. Let b11, b12 be two vertices of the

second factor I, b21, b22 be two vertices of the third factor I and b31, b32 be two vertices of
the last factor I. Let

Fi = F ′
i × I3, 1 ≤ i ≤ m + 1,

Fm+2 = ∆m × b11 × I2, Fm+3 = ∆m × b12 × I2, Fm+4 = ∆m × I × b21 × I,

Fm+5 = ∆m × I × b22 × I, Fm+6 = ∆m × I2 × b31, Fm+7 = ∆m × I2 × b32.

Then F(∆m × I3) = {F1, · · · , Fm+7}.
We choose F1, F2, · · · , Fm, Fm+2, Fm+4, Fm+6 such that they meet at one vertex of ∆m×

I3. Without loss of generality, let λ(Fi) = ei, 1 ≤ i ≤ m;λ(Fm+2) = em+1, λ(Fm+4) =
em+2, λ(Fm+6) = em+3. By the linear independence condition of characteristic functions, we
have λ(Fm+1) = e1+ · · ·+em+ek1 + · · ·+eki

, where m+1 ≤ k1 < · · · < ki ≤ m+3, 0 ≤ i ≤ 3.
Then our argument is divided into two cases:

(I) λ(Fm+1) = e1 + · · ·+ em.
(II) λ(Fm+1) = e1 + · · ·+em +ek1 + · · ·+eki

, where m+1 ≤ k1 < · · · < ki ≤ m+3, 1 ≤
i ≤ 3.

(I) λ(Fm+1) = e1 + · · ·+ em.
In this case, by the linear independence condition of characteristic functions, we have

λ(Fm+3) = em+1 + et1 + · · ·+ etj
, em+1 + em+2 + et1 + · · ·+ etj

,

em+1 + em+3 + et1 + · · ·+ etj

or em+1 + em+2 + em+3 + et1 + · · · + etj
, where 1 ≤ t1 < · · · < tj ≤ m, 0 ≤ j ≤ m.

When λ(Fm+3) = em+1, by Stong homomorphism, the small cover constructed from such λ

equivariantly bounds. Here we only consider non-bounding small covers. Thus, λ(Fm+3) 6=
em+1. Our argument is divided into four cases:

(I1) λ(Fm+3) = em+1 + et1 + · · ·+ etj
, where 1 ≤ t1 < · · · < tj ≤ m, 1 ≤ j ≤ m,

(I2) λ(Fm+3) = em+1 + em+2 + et1 + · · ·+ etj
, where 1 ≤ t1 < · · · < tj ≤ m, 0 ≤ j ≤ m,

(I3) λ(Fm+3) = em+1 + em+3 + et1 + · · ·+ etj
, where 1 ≤ t1 < · · · < tj ≤ m, 0 ≤ j ≤ m,

(I4) λ(Fm+3) = em+1 + em+2 + em+3 + et1 + · · ·+ etj
, where 1 ≤ t1 < · · · < tj ≤ m, 0 ≤

j ≤ m.
(I1) λ(Fm+3) = em+1 + et1 + · · ·+ etj

, where 1 ≤ t1 < · · · < tj ≤ m, 1 ≤ j ≤ m. In this
case, by the linear independence condition of characteristic functions, we have

λ(Fm+5) = em+2 + el1 + · · ·+ elk
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or em+2 + em+3 + el1 + · · · + elk , where 1 ≤ l1 < · · · < lk ≤ m + 1, 0 ≤ k ≤ m + 1. When
λ(Fm+5) = em+2, by Stong homomorphism, the small cover constructed from λ equivariantly
bounds. Thus, λ(Fm+5) 6= em+2. When

λ(Fm+5) = em+2 + el1 + · · ·+ elk , 1 ≤ l1 < · · · < lk ≤ m + 1

and 1 ≤ k ≤ m+1, by the linear independence condition of characteristic functions and Stong
homomorphism, λ(Fm+7) = em+3 + ef1 + · · ·+ efl

, 1 ≤ f1 < · · · < fl ≤ m + 2, 1 ≤ l ≤ m + 2.
When

λ(Fm+5) = em+2 + em+3 + el1 + · · ·+ elk , 1 ≤ l1 < · · · < lk ≤ m + 1

and 0 ≤ k ≤ m + 1, similarly we have

λ(Fm+7) = em+3 + eg1 + · · ·+ egh
, 1 ≤ g1 < · · · < gh ≤ m + 1, 1 ≤ h ≤ m + 1.

Thus, the values of λ have 3 · 23m+2− 5 · 22m+2 + 9 · 2m− 1 possible choices in case (I1).
(I2) λ(Fm+3) = em+1 + em+2 + et1 + · · ·+ etj

, where 1 ≤ t1 < · · · < tj ≤ m, 0 ≤ j ≤ m.
By the linear independence condition of characteristic functions and Stong homomorphism,
we have

λ(Fm+5) = em+2 + el1 + · · ·+ elk , 1 ≤ l1 < · · · < lk ≤ m, 1 ≤ k ≤ m

or

λ(Fm+5) = em+2 + em+3 + el1 + · · ·+ elk , 1 ≤ l1 < · · · < lk ≤ m, 0 ≤ k ≤ m.

When

λ(Fm+5) = em+2 + el1 + · · ·+ elk , 1 ≤ l1 < · · · < lk ≤ m

and

1 ≤ k ≤ m,λ(Fm+7) = em+3 + ef1 + · · ·+ efl
, 1 ≤ f1 < · · · < fl ≤ m + 2, 1 ≤ l ≤ m + 2.

When

λ(Fm+5) = em+2 + em+3 + el1 + · · ·+ elk , 1 ≤ l1 < · · · < lk ≤ m

and

0 ≤ k ≤ m,λ(Fm+7) = em+3 + eg1 + · · ·+ egh
, 1 ≤ g1 < · · · < gh ≤ m, 1 ≤ h ≤ m.

Thus, the values of λ have 5 · 23m − 3 · 22m+1 + 2m possible choices in case (I2).
(I3) λ(Fm+3) = em+1 + em+3 + et1 + · · ·+ etj

, where 1 ≤ t1 < · · · < tj ≤ m, 0 ≤ j ≤ m.
If we first consider λ(Fm+7) and lastly consider λ(Fm+5) in this case, then the problem is
reduced to case (I2), so the values of λ also have 5 · 23m − 3 · 22m+1 + 2m possible choices in
case (I3).
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(I4) λ(Fm+3) = em+1 + em+2 + em+3 + et1 + · · · + etj
, where 1 ≤ t1 < · · · < tj ≤

m, 0 ≤ j ≤ m. By the linear independence condition of characteristic functions and Stong
homomorphism, we have

λ(Fm+5) = em+2 + el1 + · · ·+ elk , 1 ≤ l1 < · · · < lk ≤ m, 1 ≤ k ≤ m

or

λ(Fm+5) = em+2 + em+3 + el1 + · · ·+ elk , 1 ≤ l1 < · · · < lk ≤ m, 0 ≤ k ≤ m.

When

λ(Fm+5) = em+2 + el1 + · · ·+ elk , 1 ≤ l1 < · · · < lk ≤ m

and 1 ≤ k ≤ m, λ(Fm+7) = em+3 + ef1 + · · · + efl
, 1 ≤ f1 < · · · < fl ≤ m + 2, f1 6=

m + 1, · · · , fl 6= m + 1, 1 ≤ l ≤ m + 1. When

λ(Fm+5) = em+2 + em+3 + el1 + · · ·+ elk , 1 ≤ l1 < · · · < lk ≤ m

and

0 ≤ k ≤ m,λ(Fm+7) = em+3 + eg1 + · · ·+ egh
, 1 ≤ g1 < · · · < gh ≤ m, 1 ≤ h ≤ m.

Thus, the values of λ have 3 · 23m − 22m+2 + 2m possible choices in case (I4).
So in case (I), the values of λ have 25 · 23m − 9 · 22m+2 + 6 · 2m+1 − 1 possible choices.
(II) λ(Fm+1) = e1 + · · ·+ em + ek1 + · · ·+ eki

, where m + 1 ≤ k1 < · · · < ki ≤ m + 3,

1 ≤ i ≤ 3. In this case, no matter which value of λ(Fm+1) is chosen, the small cover
constructed from λ equivariantly bounds. We only give the proof of the case λ(Fm+1) =
e1 + · · ·+ em + em+1 because when other values of λ(Fm+1) are chosen, the proof is similar.

When λ(Fm+1) = e1 + · · · + em + em+1, by the linear independence condition of char-
acteristic functions and Stong homomorphism, we have λ(Fm+3) = em+1 + em+2. Similarly
we have λ(Fm+5) = em+2 + em+3 and λ(Fm+7) = em+3. By Stong homomorphism, the small
cover constructed from such λ equivariantly bounds.

We may choose other basis of (Z2)m+3. There are

m+3∏
t=1

(2m+3−2t−1)

48(m+1)!
choices for a basis of

(Z2)m+3 in this case if we consider equivariant cobordism classification by Stong homomor-
phism. Thus, there are

m+3∏
t=1

(2m+3 − 2t−1)

48(m + 1)!
(25 · 23m − 9 · 22m+2 + 6 · 2m+1 − 1)

non-bounding small covers over ∆m × I3 up to equivariant cobordism.
Adding the small cover that equivariantly bounds, we give the calculation formula of

the number of small covers over ∆m × I3 up to equivariant cobordism.
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单形和3维立方体乘积上小覆盖的等变协边类的个数

陈彦昌, 王红军

(河南师范大学数学与信息科学学院, 河南新乡 453007)

摘要: 本文研究了小覆盖的等变协边分类. 利用示性函数和Stong同态确定了单形和3维立方体乘积上

小覆盖的等变协边类的个数, 推广了现有文献中的相关结果.
关键词: 协边; 小覆盖; 切表示
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