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Abstract: In this paper, we study a projection-related cone volumn inequality. By using

gradient projection of convex function, we obtain a new cone volume inequality restricted to the

origin-symmetric convex bodies in Rn. The inequality promotes the solves of Schneider’s projection

problem.
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1 Introduction

A convex body K (i.e., a compact, convex subset with nonempty interior) in Euclidean
n-space Rn, is determined by its support function, h(K, ·) : Sn−1 7→ Rn, on the unit sphere
Sn−1, where h(K, u) = max{u ·x|x ∈ K} and where u ·x denotes the standard inner product
of u and x. The projection body, ΠK, of K is the convex body whose support function,
for u ∈ Sn−1, is given by h(ΠK, u) = voln−1(K|u⊥), where voln−1 denotes the (n − 1)-
dimensional volume and K|u⊥ denotes the image of the orthogonal projection of K onto the
codimension 1 subspace orthogonal to u.

Projection bodies were introduced by Minkowski at the beginning of the previous cen-
tury in connection with Cauchy’s surface area formula. Since 1980s, projection bodies
received considerable attention. An important unsolved problem regarding projection bod-
ies is Schneider’s projection problem (see [7]): what is the least upper bound, as K ranges
over the class of origin-symmetric convex bodies in Rn, of the affine-invariant ratio

[
V (ΠK)/V (K)n−1]

1
n ,

where V is used to denote the n-dimensional volume.
An effective tool to study Schneider’s projection problem is the cone volume func-

tional U introduced by Lutwak, Yang and Zhang [1]: if P is a convex polytope in Rn
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which contains the origin o in its interior, then define U(P ) through the formula U(P )n =
1

nn

∑
ui1

∧···∧ uin 6=0

hi1 · · ·hin
ai1 · · · ain

, where ui1 , · · · , uiN
are the outer normal unit vectors to

the corresponding facets Fi of F1, · · · , FN of P , and the facet with outer normal vector ui

has area (i.e., (n− 1)-dimensional volume) ai and distance hi from the origin.
Let Vi = 1

n
hiai. Then Vi is the volume of the cone conv(o, Fi), and

U(P )n =
∑

ui1

∧···∧ uin 6=0

Vi1 · · · Vin
,

obviously the functional U is centro-affine invariant, i.e.,

U(øP ) = U(P ), ∀ø ∈ SL(n),

since V (P ) = 1
n

N∑
i=1

aihi, it follows that U(P )/V (P ) ≤ 1.

By the way, we observe the cone volume functional U has strong connection with the
cone measure: for every star-shaped body K ⊆ Rn, the cone measure of a subset A and vertex
o. The cone measure appears in the Gromov-Milman theorem [9] on the concentration of
Lipschitz functions on uniformly convex bodies. In [8], Anor established the precise relation
between the surface measure and cone measure on the sphere of lnp .

One fundamental, but still remaining open extremum problem, on the ratio of U to V

is posed by Lutwak, Deane, and Zhang [1].
Conjecture If P is a convex polytope in Rn with its centroid at the origin, then

U(P )
V (P )

≥ (n!)1/n

n

with equality when and only when P is a parallelotope.
The first progress on LYZ’s conjecture was due to He, Leng and Li [2]. They proved

that the conjecture is true when restricted to the class of origin-symmetric convex polytopes.
Theorem 1.1 Suppose that P ⊆ Rn is an origin-symmetric convex polytope, then

U(P )
V (P )

≥ (n!)1/n

n

with equality when and only when P is a parallelotope.
Lutwak, Yang and Zhang presented a version of Schneider’s conjecture that has an

affirmative answer. They proved the following important theorems.
Theorem 1.2 Suppose K is an origin-symmetric convex polytope in Rn, then

V (ΠK)
U(K)n

2 V (K)n
2−1

≤ 2n(
nn

n!
)

1
2

with equality when and only when K is a parallelotope.
By Theorems 1.1 and 1.2, the following theorem is obtained.



No. 1 A projection-related cone volume inequality 87

Theorem 1.3 Suppose K is an origin-symmetric convex polytope in Rn, then

V (ΠK)
U(K)n−1

≤ 2n nn−1

(n!)(n−1)/n

with equality when and only when K is a parallelotope.
Theorem 1.3 can be seen as a modified version of Schneider’s projection conjecture.
This paper is devoted to the study of LYZ’s conjecture. We give another answer to

the cone volume inequality in origin-symmetric convex bodies.
Theorem 1.4 Suppose that P ⊂ Rj ×Rn−j is an origin-symmetric convex body with

interior points. V (P ) is the volume of P , K is a convex cone, the vertex of which is at the
origin, then V (K) ≤ j

n
V (P ).

2 The Proofs of Theorem

Definition 2.1 If P ⊂ Rj × Rn−j , 1 ≤ j ≤ n− 1, is an origin-symmetric convex body
with interior points. Suppose (xo, yo) is the centroid of P , xo ∈ Rj , yo ∈ Rn−j , D = K|Rj ,
L ⊂ Rn is a j-dimensional subspace, and f(x) = voln−j(P

⋂
(L⊥+x)), x ∈ D, ux is the outer

normal unit vector of x on ∂D. For convex cone K, the vertex of which is at the origin, then
define the volume of K by

V (K) =
1
n

∫

∂D

〈(x− xo), ux〉f(x)dS(x) =
1
n

∫

∂D

(x− xo)f(x)dS(x).

Theorem 2.1 Let P ∈ Rj × Rn−j , 1 ≤ j ≤ n − 1, be an origin-symmetric smooth
convex body with interior points, V (P ) is the volume of P , then

V (K) ≤ j

n
V (P ). (2.1)

Proof Suppose D = K|Rj , L ⊂ Rn is a j-dimensional subspace, and

f(x) = voln−j(P
⋂

(L⊥ + x)), x ∈ D.

Let (xo, yo) is the centroid of P, xo ∈ Rj , yo ∈ Rn−j , ux is the outer normal unit vector
of x on ∂D, then

V (K) =
1
n

∫

∂D

〈(x− xo), ux〉f(x)dS(x) =
1
n

∫

∂D

(x− xo)f(x)dS(x).

According to the Gauss formula

V (K) =
1
n

∫

∂D




(x1 − xo
1)f(x1, · · · , xj)

...
(xj − xo

j)f(x1, · · · , xj)


 dS(x)

=
1
n

∫

D

[f ′1 · (x1 − xo
1) + · · ·+ f ′j · (xj − xo

j) + j · f ]dσ

=
j

n

∫

D

fdσ +
1
n

∫

D

(gradf, (x− xo))dσ

=
j

n
V (P ) +

1
n

∫

D

(gradf, (x− xo))dσ.
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The direction of gradg varies with the direction of contour surface, and is directed from
the low value to the high value, therefore the contour surface and (x − xo) form an obtuse

angle, obviously
∫

D

(gradf, (x− xo))dσ ≤ 0, so that V (K) ≤ j
n
V (P ).

Lemma 2.2 Let P ⊂ Rn be a convex body and L ⊂ Rn be a j-dimensional subspace,
1 ≤ j ≤ n− 1. If f : L 7→ R, f(x) = voln−j(P

⋂
(L⊥ + x)), then f

1
n−j is concave on P | L.

From [6], we know that continuous convex function on a Banach space can be approxi-
mated by a smooth convex function, it follows immediately that

Lemma 2.3 Let f
1

n−j be a concave function on D , for any ε > 0, there exists a M > 0
and a smooth concave function g

1
n−j , | f 1

n−j − g
1

n−j |< ε
M

, then f approximates g.
Proof Suppose f̃ = f

1
n−j , g̃ = g

1
n−j , from the Lagrange’s mean value theorem, it

follows that

| f̃n−j − g̃n−j |=| (n− j)un−j−1(f̃ − g̃) |< ε

M
,

let f ≤ u ≤ g (or g ≤ u ≤ f), the function u is bounded, then | f − g |=| f̃n−j − g̃n−j |< ε,

so that f approximates g.
Proof of Theorem 1.4 Suppose D = K|Rj , L ⊂ Rn is a j-dimensional subspace,

and f(x) = voln−j(P
⋂

(L⊥ + x)), x ∈ D.
Let (xo, yo) is the centroid of P , xo ∈ Rj , yo ∈ Rn−j , ux is the outer normal unit vector

of x on ∂D, and

V (K) =
1
n

∫

∂D

((x− xo), ux)f(x)dS(x)

=
1
n

∫

∂D

(x− xo)|f − g + g|dS(x)

≤ 1
n

∫

∂D

(x− xo)|f − g|dS(x) +
1
n

∫

∂D

(x− xo)gdS(x)

=
1
n

∫

∂D

(x− xo)εdS(x) +
1
n

∫

∂D

(x− xo)gdS(x)

=
1
n

∫

∂D

(x− xo)gdS(x) +
j

n

∫

D

εdσ.

According to the Gauss formula

V (K) =
1
n

∫

∂D




(x1 − xo
1)g(x1, · · · , xj)

...
(xj − xo

j)g(x1, · · · , xj)


 dS(x) +

j

n

∫

D

εdσ

=
1
n

∫

D

[g′1 · (x1 − xo
1) + · · ·+ g′j · (xj − xo

j) + j · g]dσ +
j

n

∫

D

εdσ

=
j

n

∫

D

gdσ +
1
n

∫

D

(gradg, (x− xo))dσ +
j

n

∫

D

εdσ

=
j

n

∫

D

(g + ε)dσ +
1
n

∫

D

(gradg, (x− xo))dσ.
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The direction of gradg varies with the direction of contour surface, and is directed from
the low value to the high value, therefore the contour lines and (x − xo) form an obtuse
angle, obviously ∫

D

(gradg, (x− xo))dσ ≤ 0,

so that V (K) ≤ j
n

∫
D

(g + ε)dσ, since |f − g| < ε, then V (K) ≤ j
n
V (P ).

This completes the proof.
For origin-symmetric convex polytopes, the first progress was due to He-Leng-Li [2].

They gave an affirmative answer to the LYZ’s conjecture in Rn. They proved the inequality

∑

ui1

∧ ···∧ uij

∧
uik

=0

Vik
≤ j

n
V (P ), 1 ≤ j ≤ n− 1.

And from the definition of U(P ), the proof of Theorem 1.1 was obtained in [2]. To make
the paper self-contained, we present it here.

Proof of Theorem 1.1

U(P )n =
∑

ui1

∧···∧ uin 6=0

Vi1 · · ·Vin

=
∑

ui1

∧···∧ uin−1 6=0

Vi1 · · ·Vin−1(V −
∑

ui1

∧···∧ uin−1

∧
uik

=0

Vik
)

≥
∑

ui1

∧···∧ uin−1 6=0

Vi1 · · ·Vin−1(V − n− 1
n

V )

...

=
(n− 2)!
nn−2

V n−2
∑

ui1ui2 6=0

Vi1Vi2

=
(n− 2)!
nn−2

V n−2
∑

ui1 6=0

Vi1(V −
∑

ui1uik
=0

Vk)

≥(n− 1)!
nn−1

V n−1
∑

ui1 6=0

Vi1 =
n!
nn

V n,

that is,

U(P ) ≥ (n!)1/n

n
V (P ),

where the equality holds when and only when P is a parallelotope.
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一个与投影体相关的锥体积不等式

杨 颖, 李德宜

(武汉科技大学理学院, 湖北武汉 430065)

摘要: 本文研究了一个与投影体相关的锥体积不等式. 利用凸函数的梯度性质, 获得了n 维欧氏空间

中关于任意原点对称凸体的一个锥体积不等式, 推进了Schneider投影问题的解决.
关键词: 凸体; 投影体; Schneider投影问题; 锥体积不等式
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