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Abstract: In this paper, we study the problem of the Orlicz projection bodies recently

introduced by Lutwak, Yang and Zhang. By using the linear invariant property of Orlicz projection

bodies, we obtain the result that the Orlicz projection bodies of ellipsoids are still ellipsoids. As

examples, we compute two concrete support functions of Orlicz projection bodies of the unit ball

for two specific convex functions.
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1 Introduction

In a series of ground-breaking work by Lutwak, Yang and Zhang [7, 8], the classical
Brunn-Minkowski theory emerged at the turn of the 19th into the 20th century and then the
Lp Brunn-Minkowski theory originated from Lutwak’s seminal work [4, 5], were remarkably
generalized to the more broad framework, which is the so-called Orlicz-Brunn-Minkowski
theory.

Within the Orlicz-Brunn-Minkowski theory, Orlicz projection body is spontaneously the
important object. In retrospect, the two classical inequalities which connect the volume of
a convex body with that of its polar projection body are the Petty and Zhang projection
inequalities. The Petty projection inequality led to the affine Sobolev inequality [9] that is
stronger than the classical Sobolev inequality and yet is independent of any underlying Eu-
clidean structure. The Lp analogue of projection bodies and the celebrated Petty projection
inequality was established in [1] by Lutwak, Yang and Zhang, and independently derived by
Campi and Gronchi [2] using an alternate approach. Recently, Lutwak, Yang and Zhang [7]
established the corresponding Orlicz version.

We consider convex φ : R → [0,∞) such that φ(0) = 0. This means that φ must be
decreasing on (−∞, 0] and increasing on [0,∞). We will assume throughout that one of these
is happening strictly so; i.e., φ is either strictly decreasing on (−∞, 0] or strictly increasing
on [0,∞). The class of such φ will be denoted by C.
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Let K be a convex body in Rn that contains the origin in its interior and has volume
|K|. For φ ∈ C, the Orlicz projection body ΠφK of K is defined as the body whose support
function is given by

hΠφK(x) = inf

{
λ > 0 :

∫

∂K

φ

(
x · v(y)
λy · v(y)

)
y · v(y)dHn−1(y) ≤ n|K|

}
,

where v(y) is the outer unit normal of ∂K at y ∈ ∂K, where x · v(y) denotes the inner
product of x and v(y), and Hn−1 is (n− 1)-dimensional Hausdorff measure.

With φ1(t) = |t|, it turns out that for u ∈ Sn−1, hΠφ1K(u) = cn

|K| |Ku|, where |Ku|
denotes the (n− 1)-dimensional volume of Ku, the image of the orthogonal projection of K

onto the subspace u⊥. Thus Πφ1K = cn

|K|ΠK, where ΠK is the classical projection body of
K introduced by Minkowski.

With φp(t) = |t|p, and p ≥ 1, Πφp
K = cn,p

|K|
1
p
ΠpK, where ΠpK is the Lp projection body

of K, defined as the convex body whose support function is given by

hΠpK(x) =

{∫

∂K

|x · v(y)|p|y · v(y)|1−pdHn−1(y)

}1/p

.

In this paper, we demonstrate the fact that the Orlicz projection bodies of ellipsoids
are still ellipsoids in Rn. As examples, we compute two concrete support functions of Orlicz
projection bodies of the unit ball for two specific convex functions.

2 Basics Regarding Convex Bodies

The setting for this paper is the n-dimensional Euclidean space Rn. We write e1, · · · , en

for the standard orthonormal basis of Rn. Throughout this paper, Bn = {x ∈ Rn : |x| ≤ 1}
denotes the unit ball centered at the origin, and ωn = |Bn| denotes its n-dimensional volume.

A convex body is a compact convex subset of Rn with nonempty interior. All the convex
bodies of Rn will be denoted by Kn

0 . Associated with a convex body K is its support function
hK defined on Rn by hK(x) = max{x · y : y ∈ K}. Thus, if y ∈ ∂K, then hK(vK(y)) =
vK(y) · y, where vK(y) denotes an outer unit normal to ∂K at y.

For more detailed facts on convex bodies, you can refer the excellent books authored by
Schneider [3] and Gardner [6].

3 Main Results

In [7], it is proved that the definition of hΠφK(x) is equivalent to the following definition:

hΠφK(x) = inf

{
λ > 0 :

∫

Sn−1

φ

(
x · u

λhK(u)

)
hK(u)dSK(u) ≤ n|K|

}
,

or equivalently,

hΠφK(x) = inf

{
λ > 0 :

∫

Sn−1

φ

(
1
λ

(x · u)ρK∗(u)

)
dVK(u) ≤ 1

}
.
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The polar body of ΠφK will be denoted by Π∗φK.
Since the area measure SK cannot be concentrated on a closed hemisphere of Sn−1, and

since we assume that φ is strictly increasing on [0,∞) or strictly decreasing on (−∞, 0], it
follows that the function

λ 7−→
∫

Sn−1

φ

(
1
λ

(x · u)ρK∗(u)

)
dVK(u)

is strictly decreasing in (0,∞). Thus we have
Lemma 1 Suppose φ ∈ C, and K ∈ Kn

0 . If x0 ∈ Rn \ {0}, then

∫

Sn−1

φ

(
x0 · v

λ0hK(v)

)
dVK(v) > 1,

= 1, or < 1, respectively, if and only if hΠφK(x0) > λ0, = λ0, or < λ0, respectively.
From Lemma 1, we can show immediately the inclusion relation, which is a monotonicity

of Orlicz projection body in some sense.
Theorem 1 If K ∈ K and φ1, φ2 ∈ C, φ1 ≤ φ2, then Πφ1K ⊆ Πφ2K.
Proof ∀u ∈ Sn−1, let hΠφ1K(u) = λ. In terms of Lemma 1, it has

1
n|K|

∫

Sn−1

φ1

(
u · υ

λhK(υ)

)
hK(υ)dSK(υ) = 1.

Since φ1 ≤ φ2, we have

1
n|K|

∫

Sn−1

φ2

(
u · υ

λhK(υ)

)
hK(υ)dSK(υ) ≥ 1

from Lemma 1 again, we have hΠφ2K(u) ≥ λ. Therefore hΠφ1K(u) ≤ hΠφ2K(u), that is
Πφ1K ⊆ Πφ2K. This completes the proof.

Theorem 2 The Orlicz projection body ΠφE of the ellipsoid E is still an ellipsoid.
Proof First, we prove that the Orlicz projection body of the unit ball is still a ball

centered at the origin. Suppose A ∈ SO(n) and u ∈ Sn−1, let z = Atv. Then

1
ωn

∫

Bn

φ(
1
λ

Au · υ)dυ =
1
ωn

∫

Bn

φ(
1
λ

u ·Atυ)dAtυ =
1
ωn

∫

AtBn

φ(
1
λ

u · z)dz

=
1
ωn

∫

Bn

φ(
1
λ

u · z)dz.

It yields hΠφBn(Au) = hΠφBn(u), which implies that the Orlicz projection body of the unit
ball is still a ball.

Second, suppose the ellipsoid E = ABn, A ∈ GL(n). According to Lemma 2.6 in [7],
we have

Πφ(E) = Πφ(ABn) = A−tΠφ(Bn).

In view of the just verified fact, it can conclude that ΠφE is still an ellipsoid.
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This completes the proof.
In the following, we compute the support functions of Orlicz projection bodies of the

unit ball, when φ1(x) = e|x| − 1 and φ2(x) = ex2 − 1, respectively. Obviously, φ1 and φ2 are
both belong to the class C.

(1) φ1(x) = e|x| − 1. We know that

hΠφ1Bn(e1) = inf{λ > 0 :
∫

Sn−1

φ1(
1
λ

e1 · u)dS(u) ≤ nωn}

= inf{λ > 0 :
∫

Sn−1

(e
|u1|

λ − 1)dS(u) ≤ nωn}.

From Lemma 1, we have
∫

Sn−1

(e
|u1|
λ0 − 1)dS(u) = nωn ⇐⇒ hΠφ1Bn(e1) = λ0.

So, it has
∫

Sn−1

e
|u1|
λ0 dS(u) = 2nωn

=⇒ωn−1

∫ 1

−1

e
|u1|
λ0 (1− u2

1)
n−3

2 du1 = 2nωn

=⇒
∫ 1

0

e
u1
λ0 (1− u2

1)
n−3

2 du1 =
nωn

ωn−1

=⇒
∞∑

k=0

1
k!λk

0

∫ 1

0

uk
1(1− u2

1)
n−3

2 du1 =
nωn

ωn−1

.

Let u2
1 = t, it gives

∞∑
k=0

1
2k!λk

0

β(
k + 1

2
,
n− 1

2
) =

nωn

ωn−1

=⇒
∞∑

k=0

1
2k!λk

0

Γ(k+1
2

)Γ(n−1
2

)
Γ(k+n

2
)

=
nωn

ωn−1

=⇒
∞∑

k=0

1
k!λk

0

Γ(k
2

+ 1
2
)

Γ(k
2

+ n
2
)

=
n(n− 1)π

1
2

Γ(1 + n
2
)

,

(1)

which gives the required formula which hΠφ1Bn is satisfied.
(2) φ2(x) = ex2 − 1. We know that

hΠφ2Bn(e1) = inf{λ > 0 :
∫

Sn−1

φ2(
1
λ

e1 · u)dS(u) ≤ nωn}

= inf{λ > 0 :
∫

Sn−1

(e
u2
1

λ2 − 1)dS(u) ≤ nωn}.

From Lemma 1, we have
∫

Sn−1

(e
u2
1

λ2
1 − 1)dS(u) = nωn ⇐⇒ hΠφ2Bn(e1) = λ1.
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So, it has
∫

Sn−1

e
u2
1

λ2
1 dS(u) = 2nωn

=⇒ωn−1

∫ 1

−1

e
u2
1

λ2
1 (1− u2

1)
n−3

2 du1 = 2nωn

=⇒
∫ 1

0

e
u2
1

λ2
1 (1− u2

1)
n−3

2 du1 =
nωn

ωn−1

=⇒
∞∑

k=0

1
k!λ2k

1

∫ 1

0

u2k
1 (1− u2

1)
n−3

2 du1 =
nωn

ωn−1

.

Let u2
1 = t, it gives

∞∑
k=0

1
2k!λ2k

1

β(k +
1
2
,
n− 1

2
) =

nωn

ωn−1

=⇒
∞∑

k=0

1
2k!λ2k

1

Γ(k + 1
2
)Γ(n−1

2
)

Γ(k + n
2
)

=
nωn

ωn−1

=⇒
∞∑

k=0

1
k!λ2k

1

Γ(k + 1
2
)

Γ(k + n
2
)

=
n(n− 1)π

1
2

Γ(1 + n
2
)

,

(2)

which gives the required formula which hΠφ2Bn is satisfied.
In view of the very similarity between formulas (1) and (2), we set out to compare which

number is more larger between λ0 and λ1. For this aim, we consider the monotonicity of the
following function f(x).

Lemma 2 The function f(x) = Γ(x+ 1
2 )

Γ(x+ n
2 +1)

is strictly decreasing on [0,∞) with respect
to x.

Proof Constructing a function F (x) = ln Γ(x+ 1
2 )

Γ(x+ n
2 +1)

= ln Γ(x + 1
2
) − ln Γ(x + n

2
+ 1).

Since function Γ(x) is infinitely differentiable, we have

Γ(x) = lim
m→∞

m!mx

(m + x)(m− 1 + x) · · · (1 + x)x
, ∀x ∈ (0,∞),

then

Γ(x +
1
2
) = lim

m→∞
m!mx+ 1

2

(m + x + 1
2
)(m− 1 + x + 1

2
) · · · (1 + x + 1

2
)(x + 1

2
)
.

By the above expansion and the continuity of the natural logarithmic function, ln Γ(x + 1
2
)

can be written as

ln Γ(x +
1
2
) = lim

m→∞

(
lnm! + (x +

1
2
) lnm−

m∑
j=0

ln(x +
1
2

+ j)
)
.

Since this sequence is absolutely convergent, we may interchange differentiation and limits

d

dx

(
ln Γ(x +

1
2
)
)

= lim
m→∞

(
lnm−

m∑
j=0

1
x + 1

2
+ j

)
.
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It gives

F ′(x) = lim
m→∞

m∑
j=0

(
1

x + n
2

+ 1 + j
− 1

x + 1
2

+ j
) < 0 (n ≥ 1, n ∈ Z).

We obtain that f(x) = Γ(x+ 1
2 )

Γ(x+ n
2 +1)

is strictly decreasing on [0,∞) in terms with x. This
completes the proof.

Hence, according to Lemma 2, we obtain the following results λ0 > λ2
1, or equivalently,

hΠφ1Bn(e1) > h2
Πφ2Bn(e1),

where φ1(x) = e|x| − 1, φ2(x) = ex2 − 1, that is

V (Πφ1B
n)

V (Bn)
>

(
V (Πφ2B

n)
V (Bn)

)2

.
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椭球的 Orlicz投影体

王 健

(上海大学理学院数学系,上海 200444)

摘要: 本文研究了文献[1]所引入的 Orlicz投影体问题. 利用 Orlicz投影体在线性变换下的不变性, 获

得了椭球的 Orlicz投影体仍是椭球的结果. 作为例子, 计算了当取两个特定的凸函数时单位球的 Orlicz投影

体的支持函数.
关键词: 凸体; 支持函数; 投影体; Orlicz投影体
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