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Abstract: In this paper, we estimate boundedness of operator convexity for convex functions.
As an application, we obtain some relations between the power of operator means (arithmetic mean,
geometric mean, chaotically geometric mean) and those means of operator powers. In particular,
we obtain the order relation between arithmetic mean and chaotically geometric mean.
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1 Preliminary

Throughout this paper, a capital letter means a bounded linear operator on Hilbert
space H. An operator A is called positive, in symbol, A > 0 if (Az,x) > 0 for all z € H.

T is called strictly positive (simply 7' > 0) if 7" is positive and invertible, a; are positive

numbers with Y «a; = 1.
=1
A continuous function f on interval I is called operator convex on I, if 6(A), o(B) C I,

f(1l—a)A+aB) < (1—a)f(A)+af(B) holdsfor «e€]0,1]. (1.1)

Convex functions and operator convex functions are different. Typical example of such
function is " on (0, 00), which is a convex function for r» > 2, but is not operator convex.
In [1], Ando, Li and Mathias proposed a definition of the geometric mean for an n-tuple
of positive operators and showed that it has many required properties on the geometric mean.
Following [3, 4], we recall the definition of the weighted geometric mean G|n, t] with ¢ € [0, 1]
for an n-tuple of positive invertible operators Ay, As, -, A,. Let G[2,t](A1, A2) = A1t As.
For n > 3, G[n,t] is defined inductively as follows: put AZ(O) =A;foralli=1,2,--- ,n, and

A = Gl = LA((ATY) ) = Gln = LAY, AT ALY AT
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inductively for r. Then the sequence {AE”}?‘;O have the same limit for all = 1,2,--- ,n in

the Thompson metric. So we can define

Gn, t](Ay, Ay, -+ A,) = lim A",

T—00

Similarly, we can define the weighted arithmetic mean as follows: Let A[2,t](A;, A2) =
(1 —t)A; +tAs. For n > 3, put AEO) =A; foralli=1,2,--- ,n and

A = A — L) (AT ),0) = Aln — 1, (AT, ATTD AT LAY,
The sequence {/L(-T)} have the same limit for all i = 1,2,--- ,n, so it’s expressed by

Aln,t](Ay, Ay, -+ A,) = lim A7

Here we introduce the following power means: for positive invertible operators Ay, As, -+ , A,,,
define
va AT,AT)"'7A:L %7 r 0)
Py = { (T4 4 40 #
exp(Vy(log Ay,log As, - -+ log A,)), r=0.

It is clear that F'(r) is monotone increasing under the chaotic order, but is not monotone

under the usual order. Besides, F'(0) is called chaotically geometric mean for Ay, Ay, -+, A,,.
Theorem A [6-8] Let 0 < m < A; < M with m < M for i = 1,2,--- ,n and >_ ||
i=1

x; ||?= 1. If f(t) is a positive real valued continuous convex function on [m, M], then

f(Z(AifEmei)) < Z(f(Az')%%) < A(m, M, f)f(Z(Aixiaxi))a (1.2)
where F(M) = f(m)
)\(m,M,f):maX{f(t)[ T (t —m)+ f(m)]; t € [m,M]}. (1.3)

Theorem B [4] Let A and B be positive operators satisfying 0 < m < A < M for
some scalars m < M. If 0 < A < B, then

AP < K+(h7p)Bp7 p > 17

where

(p - 1)1)—1 (hp — 1)[1 — % (14)

K. (h,p) =
+( 7p) pp (h_l)(hp_l)p717
Theorem C [3] If 0 <m < A; < M withm < M, i=2,---,n(n > 2), then

G[nvt](AlyA%" : 7An) < A[nat](A17A27' o 7An) S K(h)2)G[nvt](A17A27 - 7An)>

where
(h+1)2

K (h,2) = =,
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2 Boundedness of the Operator Convexity for Convex Functions

Based on the previous results coming from the Mond-Pecaric method we obtain the
ratio type inequalities as follows.
Theorem 2.1 Let 0 < m < A; < M withm < M fori =1,2,--- ,n. If f({) is a

positive real valued continuous convex function on [m, M|, then

1

- A Ao A < A AN - f(A
)\(m,M,f)ﬂvo‘( 1, 42, ) n)) = Va(f( 1)’f( 2)’ ’f< n))
< Am, M, f)f(Va(Ar Az, oo Ag)).
Proof For unit vector x € H, put z; = \/a;x,i = 1,2,--- ,n in Theorem A, then

ZO” xx)<)\(mef(Za1Aq:m)

i=1

Since f(t) is a positive real valued continuous convex function on [m, M], (1.2) leads to

Zal Je,x) < A(m, M, f)f((z a; Az, ) < X(m, M, f)(f(z a; Az, ).

Thus we have
va(f(Al)vf(AQ)v e 7f(An)) < )‘(mv Ma f)f(va(AlvA% e 7An))

n

Next, since 0 < m < > a;A; < M and f(t) be a positive real valued continuous convex
i=1

function on [m, M], it follows from (1.2) that

(ValF(AL), F(As), -, f(A )z 2) = Zozl )z,x) > f ZO‘Z (A, 1))

= f( a(A17A27"'7An)xam)

1
W(f(va(AlaA2, s AR, x).

Y

Therefore we have

>‘(va3 f)va(f(Al))f(A2)’ e 7f(An)) > f(va(A17A27 e )An))

By the same way we can get the counterpart of Theorem 2.1.
Theorem 2.2 Let 0 <m < A; < M withm < M for i = 1,2,--- ;n. If f(t)is a

positive real valued continuous concave function on [m, M|, then

1

mf(va(Ala AQ’ e ,An))

Vv

ﬂ(mv M7 f)f(va(Al,Ag, e 7An))7

\Y
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where ji(m, M, f) = min{ 5 (L20=L0 (1 = m) + f(m)), ¢ € [m, M]}.

3 The Main Applications

Theorem 3.1 Let 0<m < A; <M withm < M fori=1,2,--- ,n.
(i) If 0 <7 <1, then

1
(Va(A17A27' te 7An>>r 2 va(ALAgal o 7A:1) Z K+(hrv ;)7T(VQ(A17A2>' te 7An))r7
(ii) If 1 <r <2, then
(VQ<A1,A2,‘ te 7An))r S VQ(A§7A£7. te 7A2) S KJr(haT)(Voz(AlaA?a‘ te 7An>)r7

(iii) If r > 2, then
1

7(VQ(A17A27. te 7An>)r S va(A;aAgal o 7A:1) S K+(h7r)(va<A17A2a e aAn))r'
K+<h,7“)

Proof Put f(t) =t", we distinguish three cases.

In the case of 0 < r < 1, f(t) = t" is operator concave, u(m, M, f) = K (h", )77,
Theorem 2.2 and the definition of operator concavity of t" lead to (i).

In the case of 1 <r <2, f(t) =t" is operator convex, A(m, M, ) = K (h,r), following
from Theorem 2.1 and the definition of operator convex, we have (ii).

In the case of r > 2, f(t) = t" is not operator convex, but is convex, so Theorem 2.1
yields (iii).

Theorem 3.2 Let 0<m < A; <M withm <M fori=1,2,--- ,n,and 0 <r <s.

(i) If 0 <7 <1, then

P roSy-1 r 1
Ky (h ,;) Ky (h a;) “F(s) < F(r) < Ki(h ,;)F(S);
(ii) If r > 1, then
K, (7, g)*ép(s) < F(r) < F(s).

Proof Since 0 < £ <1, m* < A < M?, it follows from Theorem 3.1 that

(VQ(AT,AS, 7A$z))§ > (VOC(ALA; 7A;))
r S\-z s s S\\ =
> K SV (AL AL A3 (3.1)
Ifr > 1, then 0 < % < 1, by raising all terms of (3.1) to % it follows from operator monotonity
of 2+ that
Sy-1 s s s\) 1
) s (VQ(AD A27 T 7An)) i

(ValAf, A5, 43)) 2

n

> (Va(AL A, AT > KL (I,
If 0 <r <1, then + > 1, Theorem B and (3.1) lead to

1 1 r r ry L

K+(hT7 7)(va(Ai7 A;, T 7Afb)) 2 VO&(AD A27 e 7An)r

T
r 1 — r S -1 S S S 1
> K+(h 7;) 1K+(h a;) S(va<AlaA2a”' aAn))S'
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Theorem 3.3 IfO0<m <A, <M withm < M fori=1,2,--- n, then

1
M, (1)

eva(A17A27"' JAR) < Va(€A176A2 . ’eA'n.) < Mh(l)eva(Al,Azw' 7A'n.)’

1
h—T1 —
where M, (1) = 2"~ h =M™,
eloghh-1

Proof Put f(t) = €' in Theorem 2.1, then the required inequalities hold since

1 eM—em m+1)eM — (M +1)e™
Am, M,e") = eTO(Mi—m(to —m)+e™), where ty= ( )eM — (em )
M _ _m m eM e™m _ %
_ el el oGt ho 1 gaem Lll = M, (1).
M—-—m logh eloghﬁ

Theorem 3.4 If0<m < A; <M withm < M fori=1,2,--- ,n, then

1

7va(A17A2)' o 7An) S Oa(AlvAQf o 7An) S Mh(]-)va(AhAQa e )An)a
M;(1)

where h = &,
m

Proof Replace 4; by log A; in Theorem 3.3, then h = exp(log M — logm) = %, and

1 n n n
ex (673 lo Az < OéiAi < My (1) ex (73 lo Ai s
e 4) € 3k €201 (Y ko )

i=1 i=1
1

———Qal(A1,Ag, -+ L A,) SV (A1, Agy - AL) S MR (D)$a(Ar, Agy - Ap).
M (1)

Theorem 3.5 Let 0 <m < A; < M withm < M fori=1,2,--- ,n,and 0 <t < 1.
(i) If 0 <r <1, then

IN

G (A7, A7)
K (h,2)" (G (Ary- - - A

1 -Tr T - T
K00 2K, G (A, A0)

IN

(ii) If 1 < r < 2, then

K+(h7T)_1K(hT7 2)_1(G[n,t] (A17 Tt An))T < G[n,t](Aqa M) A:L)
< K+(h,7“)2K(h, 2)" (G (Ag, -+ Ap))".
(iii) If » > 2, then
K+(h'7 T)_ZK(hr7 2)_1(G[n,t] (Ah e 7An))T < G[n,t](Awlﬂv e ,A;)
S K+(h, 7’>2K<h, 2)T(G[n,t] (Ah e )An))T'

Proof If 0 <r <1, then Theorem C implies that

K(h,2)Gpy(Ar, - A) 2 A (Ar, - Ap) > Gl (A, - L Ay). (3.2)
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By raising all terms of (3.2) to the power r, and notice that ¢" is operator concave for
0 <r <1, then we have

K<ha 2)T<G[n,t](A1a T )An))r

v

(A[n,t] (A17 e ’An))T
Z A[n,t](A'iv 7A;L)
> G[’ﬂ,t] (AL T 7A:L)

Next, replace A; by Al in (3.2) for all i = 0,1,--- ,n, it follows from Theorem 3.1 that

K(hraz)G[n,t](A;f" 7A:1,) 2 A[",t](A;’.'. ’A:l)
1
2 Kol ) Apa (Ao An)
1., r
> Ko (P 2) T (G (Ao An))"

Therefore, we have
1 —r r - r r r
K+(hT’;) K(h 72) 1(G[n,t](A1a"' aAn)) < G[n,t](AD"' ’An)‘

If r > 1, then, it follows from (3.2) and Theorem B that
K+(h7 T)K(h) 2)T(G[n,t] (Ala T 7An))r 2 (A[n,t] (A17 e >An))rv (33>

which leads to the following inequalities by (ii) of Theorem 3.1 that

1 1

. T - o, T >
(A[n7t](A17 ,An)) = K_‘,_(hyr) (A[n,t](Alﬁ ;An)) - K+(h’ fr.)

(G[n,t] (Aq) T ’A:z))
(3.4)

(ii) Replace A7 by A; in (3.3), since t" is operator convex for 1 < r < 2, we have

K(hT7 2)G[n,t] (A71‘7 e 7A£) Z A[n,t] (Aqv e 7A2)
Z A[n,t] (Ah e 7An)r
1
= K+(h,7“> G[n,t]( 1 5 n)

On the other hand, we can get the second inequality from (3.4) and (3.5) immediately.
(iii) If r > 2, it follows from (3.3), (3.4) and (3.5) that

K(hra Z)G[n,t]<A;a Tt aA:L) Z A[n,t]<A7lﬂa e aAT)

n

1
> < Apg (A, A"
N K+(h77") [1t]( ' )
1
> o Goa(Ay -, A
- K+(h,7")2G[ Al )

The second inequality follows from (3.4) and (3.5) immediately.
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