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Abstract: This paper investigates the asymptotic lower bounds of large deviation for random
variable sums of the upper tail asymptotic independent random variables with long tailed in a multi-
risk model. By using the classic method of large deviation, we obtain some expressions of random
and nonrandom sums, which extend the corresponding independent and identically distributed
results.
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1 Introduction

Motivated by the recent work of [1], we investigate the tail probability of the non-random

sums in a multi-risk model

Uz

k
ZZCUXU' (1.1)

i=1 j=1
Here {X,;,j > 1}¥_, are the sequences of upper tail asymptotic independent random vari-
ables with long tailed, and {C;;,j > 1}, be another nonnegative real sequences. The

corresponding random sums of (1.1) is

k Ni(t)

> Y Cyxy, (1.2)

i=1 j=1

where {N;(t)} be non-negative integer-value process with A;(t) = N;(t), while {N;(t),7 =
1,2,---,k} and {X;;,j > 1}F_, are mutually independent.
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Since asymptotic behavior of precise large deviations for non-random sums and random
sums of random variables has important theoretical significance and extensive applications,
it attracts much attention and there appears to be a lot of research literature. For recent
works of this aspect, we refer the reader to [1-13]. Among these papers, [11] studied the
asymptotic lower bounds of precise large deviations for sums of nonnegative and independent
and identically distributed random variable sequence {X;,j > 1}. [9] extended the results
of [11] to nonnegative and negatively dependent random variables. Also, [1] extended those
of [11] to a multi-risk model. We will extend and improve their results to the upper tail
asymptotic independent structure.

At the end of this section, we introduce some corresponding notations and concepts of
this paper required. Denoted by F(z) = P(X < x), F(z) =1— F(z), and |x] is the integer
part of . We use the following notations for two positive functions a;(x) and az(x)

>1; ai(x) ~az(x) if lim ()

ai(z) 2 ax(z) if liminf a(x) 2(2)
r—00 2

=1.
" ag(w)

Definition 1.1 [11] we say that a distribution F' on (—o0, +00) belongs to the long-
tailed distribution class, denoted by F' € L, if for any y € (—o0, +00),

F(z+y) ~ F(x).
Remark It is known that the long-tailed distribution class is one of the most important
heavy-tailed distribution classes, where we say X (or its distribution F') is heavy tailed if it
has no exponential moments.Also, one can see that, a distribution F' € £ if and only if there

exists a function A(-) : [0, 00) — [0, 00) such that h(z) — oo, lim @ =0 and

F(z+y) ~ F(x) (1.3)

holds uniformly for all |y| < h(z).
Definition 1.2 [12] we say that random variable sequence {X;,j > 1} is upper tail
asymptotic independent (UTAI), if all natural numbers i # j,

min{x;,z;}—o00

Remark For research on this structure, we refer the reader to [12], which presented

some examples to illustrate that this structure is wider than the other dependent structures.

2 Asymptotic Lower Bounds for Nonrandom Sums

Theorem 2.1  For i = 1,2,--- ,k, let {X;;,7 > 1} be a sequence of UTAI and
nonnegative random variables with common distribution F; € £, and let {n;} be a positive
integer sequence. We assume that {X;;,j > 1}¥_, are mutually independent. Then, for any
fixed0 < Cj; <o0,i=1,2,--- ,k, 7 >1,

k  n; k  n;

i=1 j=1 i=1 j=1
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holds as z — oo.
Proof We use induction to prove (2.1).
(I) When k =1, for an h(x) satisfying (1.3), we have

P(Z Clelj > J}) Z P(Z Clelj >, U(CUX” >x+ h((IJ)))

Jj=1 Jj=1 J=1

Y P(CuXu>az+hx)— Y P(CyXy >+ h(@),CuXy >+ h(z))

1=1 1<i<j<ny

A%

= ZIP(CuXU >+ h<$>>

=1

— Y P(CyXy; >z +h(@)|CuXy >z + h(z))P(CuXy >z + h(z))
1<I<j<n

= K, - K,. (2.2)

By Fy € £, we find

e x h(x
K P(Z Xi; > o + Cglj))
lim inf ! = liminf ——— > 1. (2.3)

TP CyXy ) T P(Y Xy > )
Jj=1 j=1

For K5, along with UTAI property, we have that
Ky

lim sup

e P <Z Clelj > l’)

Jj=1

X h
= lim sup Z P(Cy; X1; > o+ h(z)|CuXy > 2 + h(z)) (Cu 1>z + h(z))
tstsgsm Z C; X1 > x)

= 0. (2.4)

Hence, combining (2.2)—(2.4) leads to (2.1) when k = 1, that is

xr—00

ni

ZCUXU > ZC > ZP Clelj > 1,') (25)

j=1 j=1

(IT) For the case in which k = 2, there is
P(Z Crj X1 + Z Caj Xoj > )

ZCUXU >+ h ZCQJXQJ > h( ))

Jl Jl

ZCIJXIJ > —h(z ZCQJX2J >z + h(x))

Jj=1 Jj=1
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ZCUXU >+ h(z ZCQJXQJ > —h(z))

Jj=1 j=1
ZCUX1J> ~h(z Zngij>x+h( ))-
Jj=1 j=1

For any 0 < § < 1, by (2.5) and F; € L, i = 1,2, for sufficiently large =, we get

ZC”X” > x4 h(z ZC”X” >a], i=1,2. (2.6)
Jj=1
Since for ¢ = 1,2, {X;;,j > 1} are nonnegative, for any fixed 0 < Cy; < 00, j =1,2,--- ,n;,
we have
P() CiyXy > —h(@) > (1-0), i=1,2 (2.7)
j=1

Then, using (2.6)—(2.7), we obtain

no

Z Cii X1+ CojXoj > ) > (1-0)°P[Y_ P(Cy; X1, > z) + P(Y_ Ca;Xa; > 1)).
j=1 j=1 j=1 j=1
Therefore, letting 6 | 0, we obtain (2.1) when the case of k = 2.

(III) Now suppose that (2.1) holds for k — 1. As for k, using a similar argument to that
n (II), for any 0 < 6 < 1 and any fixed C;j;, i =1,2,--- ,k, j > 1, and when z is sufficiently
large , we have

k n
P(ZZC”X” > l‘)

k—1 n; ng
> PO)Y CyXiyy>a+h()+ PO CyXey > —h(z))
> (=GP0 Y PGy X > o+ b))+ (1= 6D PGy Xy > —h(a)
k  n
= (1- )QZZP(CUXU >z + h(z)).

Letting 6 | 0, we obtain the desired result, and the proof Theorem 2.1 is now complete.

3 Asymptotic Lower Bounds for Random Sums

Theorem 3.1 For i = 1,2,--- k, let{X;;,j7 > 1} be a sequence of UTAI and non-
negative random variables with common distribution F; € L, and let {N;(¢)} be non-
negative integer-value process with \;(t) = N;(t). We assume that {X;;,j > 1}%, and
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{N;(t),i =1,2,--- ,k} are mutually independent and that {N;(¢),i =1,2, -, k} satisfies

Ni(t)
Ai(t)

Assumption I:

—p 1l as t — oo.

Then, for any fixed 0 < C;; < 00,1 =1,2,--- ,k, j > 1,

k Ni(t) Ni(t)
i=1 j=1 i=1 j=1

holds as x — .

Proof Again by induction, as in the proof of Theorem 3.1, it is sufficient to show that
(3.1) holds for k =1,2.

(I) Taking k =1, for any 0 < § < 1 and any fixed Cy;, j > 1, and for sufficiently large

t,
Ni(t) o n
P(Z Clelj > .’E) = ZP(Z Clelj > x)P(Nl(t) = n)
j=1 n=1  j=1
> Z P(Z Clelj > l‘)P(Nl(t) = n)
A=) @) <E<[(A+8)A(t)]  j=1
L(1=0)A1(t)]
Nq(t
> P( Y CyXy >a)P(| 0 _ 1] < )
2 N (t)
L(1=0) 1 (t)]
> (1-96)? Z P(Ci;Xq; > z),

Jj=1

where the last inequality holds due to Assumption I and (2.5). Letting § | 0, Theorem 3.1
holds for k = 1, that is

Nl(t) Nl(t)
P(Z Clelj > l’) Z Z P(Clelj > .’II) (32)
j=1 j=1

(II) When k = 2, we get

Ni(t) Na(t)
P(Z Crj X1 + Z CojXoj > )
j=1 j=1
Nl(t) Nz(t)
Z P(Z Clelj > x4+ h(éﬂ), Z ngXQj > —h(.ﬂC))
j=1 =1
Nl(t) NQ(t)

+P(Z Clelj > —h(l‘), Z CQjXQj >x+ h(a:))

Jj=1 Jj=1
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By

Ni(t) Na(t)

= P()_ CuXy>a+h@)P(> ] CyXa; > —h(x))
j=1 j=1
Ni(t) N3 (t)

+P(Z CleU > —h(l‘))P(Z CQjXQj >x+ h(l’))

(3.2) and F; € L(i = 1,2), for any 0 < 6 < 1, for sufficiently large ¢, we arrive

have

N7(t) N7(t)
P CyXyy > +hx) > (1-0)[P()_ CyXy >a)]i=1,2 (3.3)
J=1 j=1
Since for i = 1,2, {X,;,7 > 1} are nonnegative, and for any fixed 0 < C;; < 00, j > 1, we
N;(t)
P() " CyXy > —h(x) > (1-0), i=1,2. (3.4)
j=1

Then, using (3.3)—(3.4), we obtain

Ni(t) Na(t)
P(Z Clelj + Z Clelj > QS')
j=1 j=1
Ni(t) N3 (t)
> (1-0)2P[Y_ P(CyXy; >x)+ P(Y CijXy; > 7).

1 j=1

—~

J

Therefore, letting 6 | 0, we obtain (3.1) for k¥ = 2. The proof Theorem 3.1 is completed.
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