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Abstract: A class of fractional order neutral differential equations is considered. By using
the method of steps and the theory of differential inequalities, the existence and uniqueness theo-
rems and the finite time stability theorem of the fractional order neutral differential equations are
obtained, which extends some corresponding results in [8, 9].
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1 Introduction

Recently, the subject of fractional order delay differential equations is gaining much
importance and attention. For details and examples, see [1-9] and the references therein.

Stability analysis is always one of the most important issues for differential equations,
although this problem was investigated for time-delay differential equations over many years.
Comparing with classical Lyapunov stability, finite-time stability (FTS) is a more practical
concept, useful to study the behavior of the system over a finite interval of time and plays
an important part in the study of the transient behavior of systems. Thus, it was widely
studied in both classical differential equations and fractional order differential equations (for
details and examples, see [8-13] and the references therein). However, for fractional order
neutral differential equations, no much progress was seen on FTS.

In this paper, we consider fractional order neutral differential equations of the form
Dy [x(t) = Ca(t — 7)) = Ax(t) + Ba(t — 7) + f(1), (1)
with associated function of initial state:

z(t) = @(t), -1 <t <0, (2)
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where °Dg, is the Caputo fractional derivative of order a(0 < v < 1), 4,B,C € R™", f €
C(R,R") and ¢ € CY([-7,0],R"). We study the FTS of such differential equations. In
details, we briefly introduce the definitions and properties of the fractional derivative and
the fractional integral in Section 2. In Section 3, the existence and uniqueness theorems and

FTS theorem are proved.

2 Preliminaries

Definitions of fractional order detivative/integral and their properties (see [14-16]) were
given below.
Definition 2.1 The fractional order integral of the function f € L([a,b],R) of order

a € RT is defined by
1

t
T — _ a—1
B0 = gy | =9 s
where T'(+) is the gamma function, and we have

ft-a)) = L OED gy s )

(s+a+1)

Definition 2.2 For a function f given on the interval [a,b], ath Riemann-Liouville

fractional order derivative of f, is defined by

~ e s

where n = [a] + 1 and [a] denotes the integer part of a.

D3 f(t)

Definition 2.3 For a function f given on the interval [a,b], ath Caputo fractional

order derivative of f, is defined by

1 t
cpe t) = t— n—a—1 g(n) ds.
I = o [ o s
Here n = [a] + 1.
In further discussion we will denote I$, f(t) and Dy, f(t) as I1* f(t) and D f(t), respec-
tively. Note that (see [15])
(1) I°I°f(t) = I**Pf(t), a,B=0.
ars _ _L(s+1l) 4sta
(2) I°t" = roraqpt™ a>0,s>-1,t>0.
(3) D*(I*f(t))=f(t), n—-1l<a<n,neN
n—1 &
(4) I“(Df(t)) = f(t) — > fP(OHE, n—1<a<nnéeN
k=0
The following lemmas play major role in our analysis.

Lemma 2.4 Let u>v > 0.
(1) If r > 1, then (u —v)" <u” —v".
(2) H0<r<1,then (u—v)">u" —o".
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Proof (1) Let r > 1, then

/Ou(u — ) lds =

>

/ (u—s)""tds + / (u—s)""'ds
0 u—v
/ (u—v—s)""tds+ / (u—s)" " ds.
0 u—v
That is (u —v)" <u" —v",u > v > 0.
(2) Let 0 <7 < 1, then

/ (u—v—s)""tds > / (u—s)""tds
0 0

/Ou<u — 8)lds — /(u — s)""Lds.

That is (u —v)" > u" —v",u > v > 0. The lemma is proved.
Lemma 2.5 Letb>c>0,7>0and 0< < 1. Then u(t) = bt’ —b(t —7)° —c7P is
decreasing on [1,+00) and u(t) € (—c?, (b — c)77].

Proof For t > 7, we have

b b
4 — —_
W= T s <O
. b—b(1— ) —c(5)°
(1 — IV _ oz
. L ¢ t
i ult) = lim BE ' (3)
Let s = 1, from (3), we have
. T b—b(1—s7)P —c(s7)”?
tlg-noc U(t) - ll—rg b sf
T (1—s7)1-68 - (sT)1=F
o llgtl) sh—1
— lim P[b(s7) P — (1 — s7)177]
5—0 (1 —s7)1=5
= —c7P.

This proves the lemma.

3 Main Results

First, we consider the initial value problem (1), (2). By the method of steps, We obtain
existence and uniqueness theorems for the initial value problem (1), (2).

Theorem 3.1 z(t) is a continuous solution of the initial value problem (1), (2) on
[—7,T] if and only if x(t) satisfies the relation

2(t) = S ABIGHog( - 1) 4 S0 A6 f(p) 4 3 AICTow(t — 1)
=0 1=0 1=0
3 ATTO[(0) — Ca(—7)], ¢ € [0,T], (4)
1=0

z(t) = o), —-7<t<0,
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where T > 0.

Proof Let z(t) € C([—7,T],R™) be the solution of the initial value problem (1), (2).
Then, for t > 0, we have

x(t) = AI%x(t) + BI*x(t — 1)+ I*f(t) + Cx(t — 7) + 2(0) — Cx(—7)
= AI*[AI°x(t) + BI®x(t —7) + I*f(t) + Cx(t — 7) + ©(0) — Cz(—7)]
+BIz(t — 1)+ 1°f(t) + Cz(t — 7) + 2(0) — Cx(—7)
= A2[%°z(t) + ABI**x(t — 7) + AI*“f(t) + ACI°x(t — 7) + AI*[x(0) — Cz(—7)]
+BIz(t — 1)+ 1°f(t) + Cz(t — 7) + 2(0) — Cx(—7)
= A21?[AI°x(t) + BI®z(t — 7) + I*f(t) + Cx(t — 7) + 2(0) — Cx(—7)]
+ABI*x(t — 1) + AI** f(t) + ACI%x(t — 7) + AI*[2(0) — Cz(—7)]
+BIz(t — 1)+ 1°f(t) + Cz(t — 7) + 2(0) — Cx(—7)
= A313x(t) + A2BI%x(t — 1) + A23* f(t) + A2CI*x(t — 1) + A% [2(0) — Cx(—7)]
+ABI*x(t — 1) + AI** f(t) + ACI%x(t — 7) + AI*[2(0) — Cz(—7)]
+BI(t—71)+ 1°f(t)+ Cx(t — 7) + 2(0) — Cx(—T1)

n—1
:Anlnax(t)+ Z AiBI(i+1)a ( + Z AT (i+1) af + Z AiC Ty ( 77_)
=0 =0 =0
n—1

+ ;} AT [z(0) — Cz(—7)].

(5)
Taking n — oo in (5), we havel|A"I"*z(t)| < ||A||I"*||z(t)|| — 0. Furthermore, we
have
= i i+1) o = i tltDe x a
I3 ABIC D a(t =)l < IBlll2] % 141 ey < MR EallAle):
nl i7(i «a (4D «a
| Z AT f)| < £l Z 1Al s e < %E ([ Af[z*),
| Z ACT 2 (t — )| < [|Cl[|]] Z 1Al sy < ICHIz ) EalllAllt)
and
n—1
[ Z AT z(0) — Cx(=7)]] < (L + [CDllell Z A s < A+ ICD el Ea(llAllE),
( )

where ||f]] = n%ax O, If@)] be any vector norm (e.g., = 1,2,00), ||A|| denotes the
0

induced norm of a matrix A and E,,( Z N +1 is the Mittag-LefHler functions. Therefore

z(t) = Z AIBIGHDag(t — 1) Z AU f (1) 4 Z AlCT " x(t — 1)
1:0 =0 =0

+ Z AT [z(0) — Cz(—7)].

=0
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Conversely, from the first equation of (4), we have

z(t) — Cx(t—7) = ZA7 BItHNeg(t — 1) —|—ZA7I(1+1)“f +ZA’ I'ex(t — )

1:0 - 1=0 (6)
+ ;A’IZO‘[Q(;(O) — Cz(—71)].

Letting the operator D* act on both sides of (6), we have

Defo(t) — Calt — 7)) = > AIBIow(t — 1) + 3 AT () + Y2 AICTC-Veg(t — 7)

i=0 1=0 =1

+ 3 A6 [a(0)  Cr(—)]

= Ba(t—71)+ f(t +ZA’BIW (t—7-+ZA’Iw‘f +ZAZCIM o(t—7)

+ iAiﬂH o[2(0) — Ca(—7)]
= Ax(t)+ Bx(t — 1)+ f(t).

This proves the theorem.

Next, by the method of steps, we prove existence and uniqueness theorems for the initial
value problem (1), (2).

Theorem 3.2 For a given real number 7" > 0 , the initial value problem (1), (2) exists
a unique continuous solution z(¢) defined on [0, 7] which coincides with ¢ on [—7,0].

Proof From Theorem 3.1, we know the initial value problem (1), (2) is equivalent to
(4). Next, we only need to prove (4) exists a unique continuous solution.

(1) For t € [0, 7], we have

xl(t) — Z At Bt Doy ( + Z Az[(z+1)af + Z AiCTiop ( _ 7_)
=0 i=0 i=0
+ 3 A'Tz2(0) — Cx(—71)]
i=0
= 3 A B Jo = 9) D (s — r)ds + 1 AT ()
+ > A'C s) e to(s = 1)ds + > AT [p(0) — Cp(—T1)].
i=0 =0

(2) For t € [1,27], we have
o (t) = Z AT f(#) + Z AT p(0) — Cp(—7)]
+§0A Bty Jo (= 9)00o (s — 7)ds
3 A B St )0 s - s
* E)Aicrém Jo (¢ = s)to(s = 7)ds

+3 AiC’F(Zl.a) f:(t —s)i ey (s — 7)ds.
i=0
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By induction, for ¢ € [(n — 1)7, n7|, we have

walt) = 3 AT + 3 AT[(0) - C(—)

=0
+ Z A'B z+1)o¢) Jo @t = s)FDe1p(s — )ds

Z Al BF((1+1)a) f (t — s)iFDa=1y (s — 7)ds

4

+ Z A'B ¢+1)a) fn 1y (t —s)FtDa"1p (s —7)ds
+ 2 AiC

+ Z AlC F(m) ffT(t —s)ie "ty (s — 7)ds
i=0

+ .

+> AiC—F(;Q) f(tn_l)T(t —s) ety (s —T)ds.
i=0

Yiemlo(s — 7)ds

T(t—s

By the method of steps, we obtain (4) exists a unique continuous solution. That is the
initial value problem (1), (2) exists a unique continuous solution z(t) defined on [0, 7] which
coincides with ¢ on [—7,0].

Here, we shall consider the finite time stability of systems (1), (2).

Definition 3.3 Systems (1), (2) is finite stable w.r.t {tq, J,d,e, M} if and only if

lell <6

and
[fOI <M, VteJ=lto,to+T]

implies
|lx(®)|| <e, Vted,

where ||| = trF_zaTXO] llp(t)]l, d, M, T, e are positive real numbers and § < «.

Theorem 3.4 If there exists a positive constant b; such that the following conditions

are satisfied:
(1) b > [|A[l + (| B]];

(T—D)* T+ Al+IBIDT™

b
(2) (1+2(C)e Tt <1
b1 =)+ AI+IBINT ArAl+IBIDT byt
(3) @ +2Cl)(t—7)% Tl ) + 7% Tetn < t%eTer Vit € [1,T;
[e3 Ta
(4) [1+2[Cl + starole e < €,

then systems (1), (2) is finite time stable w.r.t. {0, J,d,e, M }.

Proof According to the properties of the fractional calculus, we have

2(t) = 9(0) + g5 Jy (t = 9)° [Az(s) + Ba(s — 7) + f(s)]ds
+Cx(t—71)—Cp(—71), t>0.
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Therefore, for ¢t > 0,
t _
Iz < w5 Jo [t = sl*HITANz($) T+ [ Bllllz(s — )]l + 11 (s)lllds
+llell + IClell + [Clllz(E = 7)]-

If y(t) = sup |z(t+6)] and 0 <t <7, then
—7<6<0

lz @)l < (1L +2(Clllell + 225 + L2k [ 1t = sl* lly(s) 1 ds
+LBL [t — |2y (s)]|ds.
Therefore, for 0 <t < T,
Iy < (1 +2)1CIllell + 2L + L5 fo 1t = sl ly(s)ds
+LBL [t — |2y (s)]|ds.

Applying Gronwall inequality, it is easy to get

Kl AAI+IBIDt

ly@OI < [(L+2(CDlell + Faple T, 0<t<T

Also, the same argument implies the following estimate

UAN+IBID(E—tg)

Iyl < [(1+ 2/[Cly(to) + MU=t GRS o < gy <t <t + 7.

Next, we need to prove that

o byt™
ly@)Il < [+ 21CD el + flple™™ ™, 0<t<nr<T.

According to the above, the mentioned claim is true for n = 1. Assume that it is true for
n = 1,--- ,k (the induction hypothesis). Then using this hypothesis, it should be shown
that it is satisfied for n = k + 1 as well. Indeed, if 7 <t < (k+1)7 < T, then

ly@ll < 1@ +20Cy(t - 7) + e

ALA+IBIDT
T(at1)

and
bi(t—7)%

ly(t =7l < 11+ 21CD el + ST e T

Therefore,

) 1 (t=7)* (IIAH+HBII)T
Iyl < {0 +2ACDIA+ 2ICI el + I T+ e

by (t—7)<

= [(1+2]C)elle’ Riou + (1 +2||¢|) M=) e 4 I e

T(a+1) T(a+1)
<[@+2[CDllell + ”’;”ﬂ)]e”“*”-

ALA+IBIDT
T(a+1)

That is
o byt™ o by T
lz(®) < [(1+ 2lIC)llell + Fhlpylem™ < [(1+2(Cl)llell + FabgyleT™, ¢ € [0,T].
Finally, using the basic condition of Theorem 3.4, it follows:

|lz(t)]| <&, tel0,T).

This prove the theorem.
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