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Abstract: A class of fractional order neutral differential equations is considered. By using

the method of steps and the theory of differential inequalities, the existence and uniqueness theo-

rems and the finite time stability theorem of the fractional order neutral differential equations are

obtained, which extends some corresponding results in [8, 9].
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1 Introduction

Recently, the subject of fractional order delay differential equations is gaining much
importance and attention. For details and examples, see [1–9] and the references therein.

Stability analysis is always one of the most important issues for differential equations,
although this problem was investigated for time-delay differential equations over many years.
Comparing with classical Lyapunov stability, finite-time stability (FTS) is a more practical
concept, useful to study the behavior of the system over a finite interval of time and plays
an important part in the study of the transient behavior of systems. Thus, it was widely
studied in both classical differential equations and fractional order differential equations (for
details and examples, see [8–13] and the references therein). However, for fractional order
neutral differential equations, no much progress was seen on FTS.

In this paper, we consider fractional order neutral differential equations of the form

cDα
0+ [x(t)− Cx(t− τ)] = Ax(t) + Bx(t− τ) + f(t), (1)

with associated function of initial state:

x(t) = ϕ(t),−τ ≤ t ≤ 0, (2)
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where cDα
0+ is the Caputo fractional derivative of order α(0 < α ≤ 1), A, B, C ∈ Rn×n, f ∈

C(R,Rn) and ϕ ∈ C1([−τ, 0],Rn). We study the FTS of such differential equations. In
details, we briefly introduce the definitions and properties of the fractional derivative and
the fractional integral in Section 2. In Section 3, the existence and uniqueness theorems and
FTS theorem are proved.

2 Preliminaries

Definitions of fractional order detivative/integral and their properties (see [14–16]) were
given below.

Definition 2.1 The fractional order integral of the function f ∈ L1([a, b],R) of order
α ∈ R+ is defined by

Iα
a+f(t) =

1
Γ(α)

∫ t

a

(t− s)α−1f(s)ds,

where Γ(·) is the gamma function, and we have

Iα
a+((t− a)s) =

Γ(s + 1)
Γ(s + α + 1)

(t− a)s+α, s > −1.

Definition 2.2 For a function f given on the interval [a, b], αth Riemann-Liouville
fractional order derivative of f , is defined by

Dα
a+f(t) =

1
Γ(n− α)

(
d

dt
)n

∫ t

a

(t− s)n−α−1f(s)ds,

where n = [α] + 1 and [α] denotes the integer part of α.
Definition 2.3 For a function f given on the interval [a, b], αth Caputo fractional

order derivative of f , is defined by

cDα
a+f(t) =

1
Γ(n− α)

∫ t

a

(t− s)n−α−1f (n)(s)ds.

Here n = [α] + 1.
In further discussion we will denote Iα

0+f(t) and cDα
0+f(t) as Iαf(t) and Dαf(t), respec-

tively. Note that (see [15])
(1) IαIβf(t) = Iα+βf(t), α, β ≥ 0.
(2) Iαts = Γ(s+1)

Γ(s+α+1)
ts+α, α > 0, s > −1, t > 0.

(3) Dα(Iαf(t)) = f(t), n− 1 < α ≤ n, n ∈ N.

(4) Iα(Dαf(t)) = f(t)−
n−1∑
k=0

f (k)(0+) tk

k!
, n− 1 < α ≤ n, n ∈ N.

The following lemmas play major role in our analysis.
Lemma 2.4 Let u ≥ v ≥ 0.
(1) If r ≥ 1, then (u− v)r ≤ ur − vr.
(2) If 0 < r < 1, then (u− v)r ≥ ur − vr.
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Proof (1) Let r ≥ 1, then
∫ u

0

(u− s)r−1ds =
∫ u−v

0

(u− s)r−1ds +
∫ u

u−v

(u− s)r−1ds

≥
∫ u−v

0

(u− v − s)r−1ds +
∫ u

u−v

(u− s)r−1ds.

That is (u− v)r ≤ ur − vr, u ≥ v ≥ 0.

(2) Let 0 < r < 1, then
∫ u−v

0

(u− v − s)r−1ds ≥
∫ u−v

0

(u− s)r−1ds

=
∫ u

0

(u− s)r−1ds−
∫ u

u−v

(u− s)r−1ds.

That is (u− v)r ≥ ur − vr, u ≥ v ≥ 0. The lemma is proved.
Lemma 2.5 Let b > c > 0, τ ≥ 0 and 0 < β < 1. Then u(t) = btβ − b(t− τ)β − cτβ is

decreasing on [τ, +∞) and u(t) ∈ (−cτβ, (b− c)τβ].
Proof For t ≥ τ , we have

u′(t) =
bβ

t1−β
− bβ

(t− τ)1−β
≤ 0

and

lim
t→+∞

u(t) = lim
t→+∞

b− b(1− τ
t
)β − c( τ

t
)β

( 1
t
)β

. (3)

Let s = 1
t
, from (3), we have

lim
t→+∞

u(t) = lim
s→0

b−b(1−sτ)β−c(sτ)β

sβ

= lim
s→0

bτ
(1−sτ)1−β − cτ

(sτ)1−β

sβ−1

= lim
s→0

τβ[b(sτ)1−β − c(1− sτ)1−β]
(1− sτ)1−β

= −cτβ.

This proves the lemma.

3 Main Results

First, we consider the initial value problem (1), (2). By the method of steps, We obtain
existence and uniqueness theorems for the initial value problem (1), (2).

Theorem 3.1 x(t) is a continuous solution of the initial value problem (1), (2) on
[−τ, T ] if and only if x(t) satisfies the relation





x(t) =
∞∑

i=0

AiBI(i+1)αx(t− τ) +
∞∑

i=0

AiI(i+1)αf(t) +
∞∑

i=0

AiCIiαx(t− τ)

+
∞∑

i=0

AiIiα[x(0)− Cx(−τ)], t ∈ [0, T ],

x(t) = ϕ(t), −τ ≤ t ≤ 0,

(4)



46 Journal of Mathematics Vol. 34

where T > 0.

Proof Let x(t) ∈ C([−τ, T ],Rn) be the solution of the initial value problem (1), (2).
Then, for t ≥ 0, we have

x(t) = AIαx(t) + BIαx(t− τ) + Iαf(t) + Cx(t− τ) + x(0)− Cx(−τ)
= AIα[AIαx(t) + BIαx(t− τ) + Iαf(t) + Cx(t− τ) + x(0)− Cx(−τ)]

+BIαx(t− τ) + Iαf(t) + Cx(t− τ) + x(0)− Cx(−τ)
= A2I2αx(t) + ABI2αx(t− τ) + AI2αf(t) + ACIαx(t− τ) + AIα[x(0)− Cx(−τ)]

+BIαx(t− τ) + Iαf(t) + Cx(t− τ) + x(0)− Cx(−τ)
= A2I2α[AIαx(t) + BIαx(t− τ) + Iαf(t) + Cx(t− τ) + x(0)− Cx(−τ)]

+ABI2αx(t− τ) + AI2αf(t) + ACIαx(t− τ) + AIα[x(0)− Cx(−τ)]
+BIαx(t− τ) + Iαf(t) + Cx(t− τ) + x(0)− Cx(−τ)

= A3I3αx(t) + A2BI3αx(t− τ) + A2I3αf(t) + A2CI2αx(t− τ) + A2I2α[x(0)− Cx(−τ)]
+ABI2αx(t− τ) + AI2αf(t) + ACIαx(t− τ) + AIα[x(0)− Cx(−τ)]
+BIαx(t− τ) + Iαf(t) + Cx(t− τ) + x(0)− Cx(−τ)

= · · ·
= AnInαx(t) +

n−1∑
i=0

AiBI(i+1)αx(t− τ) +
n−1∑
i=0

AiI(i+1)αf(t) +
n−1∑
i=0

AiCIiαx(t− τ)

+
n−1∑
i=0

AiIiα[x(0)− Cx(−τ)].

(5)

Taking n → ∞ in (5), we have‖AnInαx(t)‖ ≤ ‖A‖Inα‖x(t)‖ → 0. Furthermore, we
have

‖
n−1∑
i=0

AiBI(i+1)αx(t− τ)‖ ≤ ‖B‖‖x‖
n−1∑
i=0

‖A‖i t(i+1)α

Γ((i+1)α+1)
≤ ‖B‖‖x‖

‖A‖ Eα(‖A‖tα),

‖
n−1∑
i=0

AiI(i+1)αf(t)‖ ≤ ‖f‖
n−1∑
i=0

‖A‖i t(i+1)α

Γ((i+1)α+1)
≤ ‖f‖

‖A‖Eα(‖A‖tα),

‖
n−1∑
i=0

AiCIiαx(t− τ)‖ ≤ ‖C‖‖x‖
n−1∑
i=0

‖A‖i tiα

Γ(iα+1)
≤ ‖C‖‖x‖Eα(‖A‖tα)

and

‖
n−1∑
i=0

AiIiα[x(0)− Cx(−τ)]‖ ≤ (1 + ‖C‖)‖ϕ‖
n−1∑
i=0

‖A‖i tiα

Γ(iα+1)
≤ (1 + ‖C‖)‖ϕ‖Eα(‖A‖tα),

where ‖f‖ = max
t∈[0,T ]

‖f(t)‖, ‖f(t)‖ be any vector norm (e.g., = 1, 2,∞), ‖A‖ denotes the

induced norm of a matrix A and Eα(t) =
∞∑

i=0

ti

Γ(iα+1)
is the Mittag-Leffler functions. Therefore

x(t) =
∞∑

i=0

AiBI(i+1)αx(t− τ) +
∞∑

i=0

AiI(i+1)αf(t) +
∞∑

i=0

AiCIiαx(t− τ)

+
∞∑

i=0

AiIiα[x(0)− Cx(−τ)].
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Conversely, from the first equation of (4), we have

x(t)− Cx(t− τ) =
∞∑

i=0

AiBI(i+1)αx(t− τ) +
∞∑

i=0

AiI(i+1)αf(t) +
∞∑

i=1

AiCIiαx(t− τ)

+
∞∑

i=0

AiIiα[x(0)− Cx(−τ)].
(6)

Letting the operator Dα act on both sides of (6), we have

Dα[x(t)− Cx(t− τ)] =
∞∑

i=0

AiBIiαx(t− τ) +
∞∑

i=0

AiIiαf(t) +
∞∑

i=1

AiCI(i−1)αx(t− τ)

+
∞∑

i=1

AiI(i−1)α[x(0)− Cx(−τ)]

= Bx(t− τ) + f(t) +
∞∑

i=1

AiBIiαx(t− τ) +
∞∑

i=1

AiIiαf(t) +
∞∑

i=1

AiCI(i−1)αx(t− τ)

+
∞∑

i=1

AiI(i−1)α[x(0)− Cx(−τ)]

= Ax(t) + Bx(t− τ) + f(t).

This proves the theorem.
Next, by the method of steps, we prove existence and uniqueness theorems for the initial

value problem (1), (2).
Theorem 3.2 For a given real number T > 0 , the initial value problem (1), (2) exists

a unique continuous solution x(t) defined on [0, T ] which coincides with ϕ on [−τ, 0].
Proof From Theorem 3.1, we know the initial value problem (1), (2) is equivalent to

(4). Next, we only need to prove (4) exists a unique continuous solution.
(1) For t ∈ [0, τ ], we have

x1(t) =
∞∑

i=0

AiBI(i+1)αx(t− τ) +
∞∑

i=0

AiI(i+1)αf(t) +
∞∑

i=0

AiCIiαx(t− τ)

+
∞∑

i=0

AiIiα[x(0)− Cx(−τ)]

=
∞∑

i=0

AiB 1
Γ((i+1)α)

∫ t

0
(t− s)(i+1)α−1ϕ(s− τ)ds +

∞∑
i=0

AiI(i+1)αf(t)

+
∞∑

i=0

AiC 1
Γ(iα)

∫ t

0
(t− s)iα−1ϕ(s− τ)ds +

∞∑
i=0

AiIiα[ϕ(0)− Cϕ(−τ)].

(2) For t ∈ [τ, 2τ ], we have

x2(t) =
∞∑

i=0

AiI(i+1)αf(t) +
∞∑

i=0

AiIiα[ϕ(0)− Cϕ(−τ)]

+
∞∑

i=0

AiB 1
Γ((i+1)α)

∫ τ

0
(t− s)(i+1)α−1ϕ(s− τ)ds

+
∞∑

i=0

AiB 1
Γ((i+1)α)

∫ t

τ
(t− s)(i+1)α−1x1(s− τ)ds

+
∞∑

i=0

AiC 1
Γ(iα)

∫ τ

0
(t− s)iα−1ϕ(s− τ)ds

+
∞∑

i=0

AiC 1
Γ(iα)

∫ t

τ
(t− s)iα−1x1(s− τ)ds.
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By induction, for t ∈ [(n− 1)τ, nτ ], we have

xn(t) =
∞∑

i=0

AiI(i+1)αf(t) +
∞∑

i=0

AiIiα[ϕ(0)− Cϕ(−τ)]

+
∞∑

i=0

AiB 1
Γ((i+1)α)

∫ τ

0
(t− s)(i+1)α−1ϕ(s− τ)ds

+
∞∑

i=0

AiB 1
Γ((i+1)α)

∫ 2τ

τ
(t− s)(i+1)α−1x1(s− τ)ds

+ · · ·
+

∞∑
i=0

AiB 1
Γ((i+1)α)

∫ t

(n−1)τ
(t− s)(i+1)α−1xn−1(s− τ)ds

+
∞∑

i=0

AiC 1
Γ(iα)

∫ τ

0
(t− s)iα−1ϕ(s− τ)ds

+
∞∑

i=0

AiC 1
Γ(iα)

∫ 2τ

τ
(t− s)iα−1x1(s− τ)ds

+ · · ·
+

∞∑
i=0

AiC 1
Γ(iα)

∫ t

(n−1)τ
(t− s)iα−1xn−1(s− τ)ds.

By the method of steps, we obtain (4) exists a unique continuous solution. That is the
initial value problem (1), (2) exists a unique continuous solution x(t) defined on [0, T ] which
coincides with ϕ on [−τ, 0].

Here, we shall consider the finite time stability of systems (1), (2).
Definition 3.3 Systems (1), (2) is finite stable w.r.t {t0, J, δ, ε,M} if and only if

‖ϕ‖ < δ

and
‖f(t)‖ < M, ∀t ∈ J = [t0, t0 + T ]

implies
‖x(t)‖ < ε, ∀t ∈ J,

where ‖ϕ‖ = max
t∈[−τ,0]

‖ϕ(t)‖, δ,M, T, ε are positive real numbers and δ < ε.

Theorem 3.4 If there exists a positive constant b1 such that the following conditions
are satisfied:

(1) b1 > ‖A‖+ ‖B‖;
(2) (1 + 2‖C‖)e b1[(T−τ)α−T α]+(‖A‖+‖B‖)τα

Γ(α+1) ≤ 1;

(3) (1 + 2‖C‖)(t− τ)αe
b1(t−τ)α+(‖A‖+‖B‖)τα

Γ(α+1) + ταe
(‖A‖+‖B‖)τα

Γ(α+1) ≤ tαe
b1tα

Γ(α+1) , ∀t ∈ [τ, T ];

(4) [1 + 2‖C‖+ MT α

δΓ(α+1)
]e

b1T α

Γ(α+1) ≤ ε
δ
,

then systems (1), (2) is finite time stable w.r.t. {0, J, δ, ε, M}.
Proof According to the properties of the fractional calculus, we have

x(t) = ϕ(0) + 1
Γ(α)

∫ t

0
(t− s)α−1[Ax(s) + Bx(s− τ) + f(s)]ds

+Cx(t− τ)− Cϕ(−τ), t ≥ 0.
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Therefore, for t ≥ 0,

‖x(t)‖ ≤ 1
Γ(α)

∫ t

0
|t− s|α−1[‖A‖‖x(s)‖+ ‖B‖‖x(s− τ)‖+ ‖f(s)‖]ds

+‖ϕ‖+ ‖C‖‖ϕ‖+ |C|‖x(t− τ)‖.
If y(t) = sup

−τ≤θ≤0
|x(t + θ)| and 0 ≤ t ≤ τ , then

‖x(t)‖ ≤ (1 + 2‖C‖)‖ϕ‖+ ‖f‖tα

Γ(α+1)
+ ‖A‖

Γ(α)

∫ t

0
|t− s|α−1‖y(s)‖ds

+ ‖B‖
Γ(α)

∫ t

0
|t− s|α−1‖y(s)‖ds.

Therefore, for 0 ≤ t ≤ τ ,

‖y(t)‖ ≤ (1 + 2‖C‖)‖ϕ‖+ ‖f‖tα

Γ(α+1)
+ ‖A‖

Γ(α)

∫ t

0
|t− s|α−1‖y(s)‖ds

+ ‖B‖
Γ(α)

∫ t

0
|t− s|α−1‖y(s)‖ds.

Applying Gronwall inequality, it is easy to get

‖y(t)‖ ≤ [(1 + 2‖C‖)‖ϕ‖+ ‖f‖tα

Γ(α+1)
]e

(‖A‖+‖B‖)tα

Γ(α+1) , 0 ≤ t ≤ τ.

Also, the same argument implies the following estimate

‖y(t)‖ ≤ [(1 + 2‖C‖)y(t0) + ‖f‖(t−t0)
α

Γ(α+1)
]e

(‖A‖+‖B‖)(t−t0)α

Γ(α+1) , 0 ≤ t0 ≤ t ≤ t0 + τ.

Next, we need to prove that

‖y(t)‖ ≤ [(1 + 2‖C‖)‖ϕ‖+ ‖f‖tα

Γ(α+1)
]e

b1tα

Γ(α+1) , 0 ≤ t ≤ nτ ≤ T.

According to the above, the mentioned claim is true for n = 1. Assume that it is true for
n = 1, · · · , k (the induction hypothesis). Then using this hypothesis, it should be shown
that it is satisfied for n = k + 1 as well. Indeed, if τ ≤ t ≤ (k + 1)τ ≤ T , then

‖y(t)‖ ≤ [(1 + 2‖C‖)y(t− τ) + ‖f‖τα

Γ(α+1)
]e

(‖A‖+‖B‖)τα

Γ(α+1)

and

‖y(t− τ)‖ ≤ [(1 + 2‖C‖)‖ϕ‖+ ‖f‖(t−τ)α

Γ(α+1)
]e

b1(t−τ)α

Γ(α+1) .

Therefore,

‖y(t)‖ ≤ {(1 + 2‖C‖)[(1 + 2‖C‖)‖ϕ‖+ ‖f‖(t−τ)α

Γ(α+1)
]e

b1(t−τ)α

Γ(α+1) + ‖f‖τα

Γ(α+1)
}e (‖A‖+‖B‖)τα

Γ(α+1)

= [(1 + 2‖C‖)2‖ϕ‖e b1(t−τ)α

Γ(α+1) + (1 + 2‖C‖)‖f‖(t−τ)α

Γ(α+1)
e

b1(t−τ)α

Γ(α+1) + ‖f‖τα

Γ(α+1)
]e

(‖A‖+‖B‖)τα

Γ(α+1)

≤ [(1 + 2‖C‖)‖ϕ‖+ ‖f‖tα

Γ(α+1)
]e

b1tα

Γ(α+1) .

That is

‖x(t)‖ ≤ [(1 + 2‖C‖)‖ϕ‖+ ‖f‖tα

Γ(α+1)
]e

b1tα

Γ(α+1) ≤ [(1 + 2‖C‖)‖ϕ‖+ Mtα

Γ(α+1)
]e

b1T α

Γ(α+1) , t ∈ [0, T ].

Finally, using the basic condition of Theorem 3.4, it follows:

‖x(t)‖ < ε, t ∈ [0, T ].

This prove the theorem.
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分数阶中立型微分方程的有限时间稳定

刘可为1,2 ,蒋 威1

(1.安徽大学数学学院,安徽合肥 230039)

(2.合肥工业大学数学学院,安徽合肥 230009)

摘要: 本文研究了一类分数阶中立型微分方程的有限时间稳定性问题. 利用分步法及微分不等式理

论, 获得了该方程解的存在唯一性及有限时间稳定性结果.推广了文献[8, 9]的相关结果.
关键词: 存在唯一; 有限时间稳定; 分数阶中立型
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