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Abstract: In this article, we study the complete convergence for weighted sums of ¢-mixing
random variables without assumptions of identical distribution. By using the truncated method
and the moment inequality of random variables, we obtain the complete convergence and strong
law of large numbers for weighted sums of ¢-mixing random variables, which generalize and extend
the corresponding results for independent and identically distributed random variables.
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1 Introduction

Let {X,;n > 1} be a sequence of random variables that defined on a probability space
(Q,F,P). Let n and m be positive integers, F" denote the o-algebra generated by the
random variables X,,, X, 41, - ,X.;n. Let S,7 C N be nonempty sets, and define that
Fs =o0(X;;i € S CN). Given two o - algebras v, ( in F, note that

p(1,¢) =sup (|[P(B|A) - P(B)|; A € ¢, P(A) >0,B€(), (1.1)
and define the ¢ - mixing coefficients by

@(n) = sup{p(Fs, Fr); finite subsets S,T C N such that dist(S,7) > n}, n>0. (1.2)
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Obviously, 0 < p(n+1) < @¢(n) <1,n >0 and $(0) = 1.

Definition 1.1 A sequence of random variables {X,,;n > 1} is said to be a @-mixing
sequence of random variables if there exists & € N such that (k) < 1.

Note that if {X,,;;n > 1} is a sequence of independent random variables, then @(n) =0
for all n > 1.

The concept of ¢-mixing was introduced by Wu and Lin [1], and then a number of
publications are devoted to ¢-mixing random variables. For example, We refer to Wu and Lin
[1] for the complete convergence and strong law of large numbers for identically distributed,
Wang and Hu et al. [2] for the convergence properties of the partial sums, Wang et al. [3] for
the strong law of large numbers and growth rate, Jiang and Wu [4] for the weak convergence
and complete convergence, Shen and Wang et al. [5] for the strong convergence properties
of sums of products, and so on.

The main purpose of this paper is to study the complete convergence and strong law of
large numbers for weighted sums of ¢-mixing random variables without assumptions of iden-
tically distributed. The results obtained generalize and extend the results for independent
and identically distributed random variables to the case of ¢-mixing random variables, but
also improve the almost sure convergence result of Wu and Lin [1] under a mild weighted
condition.

Throughout this paper, C' will represent a positive constant whose value may change
from one appearance to the next, and a,, = O(b,) will mean a,, < C(b,). We assume that
¢(z) is a positive increasing function on (0,00) such that ¢(z) T co as x — oo and ¢(x) is
the inverse function of ¢(x). Since ¢(z) T 0o as x — o0, it follows that ¢(x) T 0o as x — 0.
For convenience, we let ¢(0) = 0 and ¢(0) = 0.

To obtain our results, the following lemmas are needed.

Lemma 1.1 Let {X,,;n > 1} be a sequence of ¢-mixing random variables with EX,, = 0
and F|X,|" < oo for some r > 1 and all n > 1. Then there exists a constant C' = C(r, p(k))
depending only on r and ¢(k) such that for any n > 1,

J " [n
) < r "
o (s3] ) <omin S
j r B " n r/2
T T 2
E <1r£ja<xn Z;Xi ) < Clog™n Z;E|Xi| + (Z (EX: )) . or>2 (14)

L l<r<2; (1.3)

=1

Proof The proof was obtained by Wu [6]. So we omit it.

Lemma 1.2 Assume that the inverse function ¢(z) of ¢(x) satisfies
n 1
o(n) —— =0(n). (1.5)
( ; (i) (

If E ¢ (|X])] < oo, then

Zgo(ln)E|XI(|X| > o(n)) < 0. (1.6)

n=1
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Proof The proof is similar to that of Lemma 1 of Sung [7]. So we omit it.
The following lemma is known, see, for example (see [6]).
Lemma 1.3 Let {X,,;n > 1} be a sequence of random variables, if there exits a random

variable X such that
P(IX,| = ) < CP(X| > 2) (1.7)

for all z > 0. We call that the sequence {X,;n > 1} of random variables is stochastically
dominated by a random variable X. Then, for V3 > 0 and V¢ > 0,

EIX, | I(1X,] < t) < C(EIX|PI(1X]| <t) +t°P(IX]| > t)); (1.8)
E|X,|’I(|X,| > t) < CE|X|I(|X]| > t). (1.9)

2 Main Results and Proofs

Theorem 2.1 Let {X,;n > 1} be a sequence of @-mixing random variables which is
stochastically dominated by a random variable X. Suppose that EX = 0, E|X|" < oo for
1 <r<2and E¢(]X])] < co. Assume that the inverse function ¢(x) of ¢(z) satisfies (1.5).
Let {an;;m > 1,4 > 1} be an array of constants such that

—of(—).

(1) max Jaul =0 (G );

2) > |an|" =0 (log_l_o‘n) for 1 <r <2 andsome a > r.

Then
J
Z ani X

i=1

oo
E n 'P | max
1<j<n
n=1

> 6) < 00 (2.1)
for all € > 0.
Proof For n > 1, define that
J
Yi =X (X <o), Ty = (anV; — EanY;),1 < j <n.

=1

It is easy to check that

> anXi = E)WXIWU<¢ ZﬁmXUWW>ﬂ))

=1 =1 =1

= T+ Y BanYi+ Y anX (|X:] > @(n));
5) + <Zn: ani X (| X3 > ¢(n)) # 0)

J
T Ean:Yi
(lglyagxn ’ +; s i=1

(lrél]azc |T;| > e — max ZEam 1>+U (1X5] > p(n

\Y
™
~—
N

N

1<j<n
sIs =1
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>5)

Hence
J

Z i X

=1

P | max
1<j<n

J n
< P (g;ljagxn T5] > & = max ZEaY ) +P (U (1] > so(n)))
S .
< P (fgjagn T3] > & — max X;Eam"’i > t, 1P<|Xi| > ¢(n)). (2.2)
First, we shall need to prove that
J
max ; Ea,;Y;| -0 asn — co. (2.3)

It follows from F [¢ (| X|)] < oo, Lemma 1.2, Lemma 1.3 and the Kronecker’s lemma that

w(lm_ZE|X|I<|X| > (i) =0 asn— oo, (2.4)

From EX =0, max lani| = O (ﬁ), Lemma 1.3, (2.4) and ¢(n) T oo, we can get that

max
1<j<n

= max
1<j<n

J
ZECLMXJ(|X1'| > (n))
i=1

J
> BauY,
=1
> Elan X I(1Xi] > ¢(n) < lani| EIX|1(1X] > ¢(n)
=1 =1

So(ln)ZEXHﬂX > (i) = 0 (2.5)

IN

<

as n — oo. It implies that (2.3) holds true. It follows from (2.2) and (2.3) that

J

Z an;i X

1=

1<j<n

c n
P <1r£ja§ > 5> <P < max |T;| > 2) + Z;P (1X;] > ¢(n)) (2.6)

for n large enough.

Hence to prove (2.1), we need to prove that
Zn‘lp < max |Tj] > 6) < 00; (2.7)
— 1<5<n 2

Zn’lzP(|Xi| > (n)) < . (2.8)
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It follows from the Markov’s inequality, (1.3) of Lemma 1.1, Lemma 1.3, EX" < 00, a > r
and the condition of > al. = O (log_l_an) that
i=1

—1 < < —1 T VT
Zln P<1mja<xn |T;| > > C’Zn <max |T5] ) _C’Zln log n;E|amYJ|

= C) nllog'ny anEIX[T(Xi| < ¢(n) <CY n'log'n ) apEIX|'T(IX] < (n)

n=1 i=1 n=1 i=1
< CZn_llogrnZafn < CZn_llogr_l_o‘n < 0. (2.9)
n=1 =1 n=1

It follows from F [¢ (| X|)] < oo and Lemma 1.3 that

don! ZP(PQI > p(n)) =) n'nP(IX] > ¢(n))

> P(¢(1X]) > n) < CE[¢(IX])] < o0

The proof of Theorem 2.1 is completed.

Theorem 2.2 Let {X,,;n > 1} be a sequence of @-mixing random variables which is
stochastically dominated by a random variable X. Suppose that EX = 0, E|X|" < oo for
r > 2 and E[¢(|X])] < co. Assume that the inverse function ¢p(x) of ¢(x) satisfies (1.5).
Let {an;;m > 1,4 > 1} be an array of constants such that

(1) max |a,| =0 <#>,

1<i<n ¢(n)
n

(2) Z |lani|" = O (log™'"*n)  forr>2 and some a > r. Then (2.1) holds true.

=1
Proof The proof is similar to that of Theorem 2.1. We only need to prove that

-1 < 1
Z;n P <1mja<xn |T;| > > CZn E <1rnja<xn T} >
0o n n r/2
C’Enillogrn ZE|aij\r + (Z E|am-Yj|2>
n=1 i=1 i=1

<
= O3 o S BIXT (X < o(n)
n=1 i=1
00 n r/2
+CY n7tog™n (Z a2, BIXi[T(1X,] < so(n)))
n=1 =1
oo n (o) n T/Q
< C’anllogrnZa;iE|X|rl (X <o(n)) + C’Znillogrn (Z af”»)
n=1 i=1 n=1 i=1
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< C i n~tlog'n Zn: a,,+C i n~tlog'n Zn: ar,
n=1 i=1 n=1 i=1

< Cin‘llogr_l_an < 00. (2.10)
n=1

The proof of Theorem 2.2 is completed.
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