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Abstract: In this paper, we investigate the condition and classification of the identity product

determined Jordan matrix algebras M = Mn(R). Using the base matrix and the symmetric

bilinear map {·, ·} skillfully constructed for this purpose and expansion, only elementary matrix

method is used. Comparing to the reference [1], we obtain a new series of equally important

definition, conclusions and proof improving the conclusions of the reference [1]. As an application

we characterize the invertible linear maps on M which preserve identity (Jordan) product.
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1 Introduction

The concept of zero product determined associative (resp., Lie, Jordan) algebras was
recently introduced by Brešar et al. in [1] and was further studied in [3–7]. The original
motivation for introducing these concepts emerges from the discovery that certain problems
concerning linear maps on algebras, such as describing linear maps preserving commutativity
or zero products, can be effectively treated by first examining bilinear maps satisfying certain
related conditions (see [2] for details).

Let A be an algebra (associative or not) over a commutative ring R with e the identity
element. A is called to be zero product determined (see [1]) if for every R-module X and
for every bilinear map {·, ·} : A×A → X, the following two conditions are equivalent:

(i) {x, y} = 0 whenever xy = 0;
(ii) there exists a linear map f : A2 → X such that {x, y} = f(xy) for any x, y ∈ A.
In [1], Brešar and others proved that the full matrix algebra Mn(R) is always zero

product determined and zero Lie product determined. If 2 is invertible in R and n ≥ 3 then
Mn(R) is also zero Jordan product determined (see [1] for details). In [3], Grašič showed that
the Lie algebra of all n×n skew-symmetric matrices over an arbitrary field F of characteristic
not 2 is zero Lie product determined, as is the simple Lie algebra of the symplectic type over
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the field F . In [4], Grašič proved that the Jordan algebra of symmetric matrices with respect
to either transpose or symplectic involution is zero product determined. In [5], the main
result of [3] was extended to more general cases. It was shown in [5] that every parabolic
subalgebra of a (finite-dimensional) simple Lie algebra defined over an algebraically closed
field is always zero product determined. In [6], Ma and others introduced a more general
concept called square-zero determined algebra and proved that the algebra of all strictly
upper triangular matrices over a unital commutative ring with 2 being invertible is such an
algebra. Let z ∈M be a fixed rank one matrix and e the identity matrix. In [7], Long Wang
and others proved that if a bilinear map {·, ·} from M×M to an R-module X satisfies the
condition that {x, y} = {e, z} whenever xy = z, then there exists a linear map f : M→M
such that {x, y} = f(xy) for any x, y ∈ M. In matrix theory, besides zero product of
elements, identity product of elements also plays important role. Inspired by above articles,
we now introduce a new concept as follows.

Definition 1.1 Let A be an algebra (associative or not) over a commutative ring
R with e the identity element. We say that A is identity product determined if for every
R-module X and for every symmetric bilinear map {·, ·} : A × A → X, the following two
conditions are equivalent:

(i) {x, y} = {u, v} whenever xy = uv = e;
(ii) {x, y} = {u, v} for any pairs x, y ∈ A and u, v ∈ A satisfying xy = uv.
Condition (ii) is equivalent to the following condition.
(iii) There exists a linear map f from A2 to X such that {x, y} = f(xy) for all x, y ∈ A,

where A2 means the algebra spanned by all elements xy.
In fact, (iii) obviously implies (ii). Conversely, if (ii) holds, we define f as f(x) = {x, e},

then f is linear and {x, y} = {xy, e} = f(xy) for all x, y ∈ A. Thus (iii) holds. In this paper
we obtain a result as follows.

Theorem 1.2 Let R be a commutative ring such that 6 ∈ R is invertible. Then the
Jordan algebra M = Mn(R) with the Jordan product x ◦ y = xy+yx

2
is identity product

determined.
Remark As an associative algebra with the ordinary product, Mn(R) is not identity

product determined. To show this, we take X to be Mn(R) itself and define the symmetric
bilinear map {·, ·} as {x, y} = 1

2
(xy + yx). If xy = uv = e, then we have {x, y} = {u, v} = e.

However, {e12, e21} 6= {e11, e11}, although e12e21 = e11e11, where eij denotes the matrix unit
which has 1 at the (i, j) position and 0 elsewhere, e denotes the identity matrix.

2 Proof of Main Result

For the proof of Theorem 1.2, we need give a lemma firstly.
Lemma 2.1 Let R be a commutative ring with 6 ∈ R being invertible, M = Mn(R),

and X be an R-module. For x, y ∈M, assume that x◦y = xy+yx
2

is the Jordan product. Let
{·, ·} be a symmetric bilinear map from M×M to an R-module X such that {x, y} = {u, v}
whenever x ◦ y = u ◦ v = e. Then {eij , ekl} = {eij ◦ ekl, e} for each pair matrix units eij and
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ekl.
Proof We divide the proof into several cases.
Case 1 We show that {eii, eii} = {eii ◦ eii, e} for i = 1, 2, . . . , n, as follows.
By (e + eii) ◦

(
e− 1

2
eii

)
= e ◦ e = e, we have

{e + eii, e− 1
2
eii} = {e, e}, (2.1)

which implies that
{eii, eii} = {eii, e} = {eii ◦ eii, e}. (2.2)

Case 2 We show that {eij , eij} = {eij ◦ eij , e} for i 6= j, as follows.
By (e + eij) ◦ (e− eij) = e ◦ e = e, we have

{e + eij , e− eij} = {e, e} (2.3)

which implies that {eij , eij} = 0. Also, {eij ◦ eij , e} = 0. Thus the result follows.
Case 3 We show that{eij , ekl} = {eij ◦ ekl, e} for i 6= j, i 6= l, k 6= j, k 6= l, as follows.
In this case, since (e + eij + ekl) ◦ (e− eij − ekl) = e ◦ e = e we have

{e + eij + ekl, e− eij − ekl} = {e, e}. (2.4)

Recalling the facts that {eij , eij} = {ekl, ekl} = 0 we have that {eij , ekl} = 0. Also, {eij ◦
ekl, e} = 0. Thus the result follows.

Case 4 We show that {eii, ejj} = {eii ◦ ejj , e} for i 6= j, as follows.
Since (e + eii + ejj) ◦ (e− 1

2
eii − 1

2
ejj) = e we have that

{e + eii + ejj , e− 1
2
eii − 1

2
ejj} = {e, e}. (2.5)

Recalling the facts that {eii, eii} = {eii, e} and {ejj , ejj} = {ejj , e} we have {eii, ejj} = 0.
On the other hand, {eii ◦ ejj , e} = 0. Thus the result holds.
Case 5 We show that {eii, ekl} = {eii ◦ ekl, e} for i 6= k, i 6= l and k 6= l, as follows.
In this case, by (e + eii + ekl) ◦ (e− 1

2
eii − ekl) = e we have

{e + eii + ekl, e− 1
2
eii − ekl} = {e, e}. (2.6)

Using the known results that {eii, eii} = {eii, e} and {ekl, ekl} = 0, we have that 3
2
{eii, ekl} =

0, which implies that {eii, ekl} = 0(recalling that 6 is invertible). Thus, {eii, ekl} = {eii ◦
ekl, e} since {eii ◦ ekl, e} = 0.

Case 6 We show that {eij , eil} = {eij ◦ eil, e} for i 6= j, i 6= l and j 6= l, as follows.
In this case, since (e + eij + eil) ◦ (e− eij − eil) = e we have

{e + eij + eil, e− eij − eil} = {e, e}. (2.7)

Using the known results that {eij , eij} = {eil, eil} = 0, we have that {eij , eil} = 0. Thus,

{eij , eil} = {eij ◦ eile}, (2.8)
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since {eij ◦ eil, e} = 0.
Case 7 We show that {eil, ejl} = {eil ◦ ejl, e} for i 6= j, i 6= l and j 6= l, as follows.

In this case, since (e + eil + ejl) ◦ (e− eil − ejl) = e we have

{e + eil + ejl, e− eil − ejl} = {e, e}. (2.9)

Using the known results that {eil, eil} = {ejl, ejl} = 0, we have that {eil, ejl} = 0. Thus,

{eil, ejl} = {eil ◦ ejle}, (2.10)

since {eil ◦ ejl, e} = 0.
Case 8 We show that {eii, eij} = {eii ◦ eij , e} for i 6= j, as follows.
In this case, by (e + eii + eij) ◦ (e− 1

2
eii − 1

2
eij) = e we have that

{e + eii + eij , e− 1
2
eii − 1

2
eij} = {e, e}. (2.11)

Using known results that {eii, eii} = {eii ◦ eii, e} = {eii, e} and {eij , eij} = 0 we obtain

{eii, eij} =
1
2
{eij , e}. (2.12)

This leads to the required result.
Case 9 We show that {ejj , eij} = {ejj ◦ eij , e} for i 6= j, as follows.
In this case, by (e + ejj + eij) ◦ (e− 1

2
ejj − 1

2
eij) = e we have that

{e + ejj + eij , e− 1
2
ejj − 1

2
eij} = {e, e}. (2.13)

Using known results that {ejj , ejj} = {ejj ◦ ejj , e} = {ejj , e} and {eij , eij} = 0 we obtain

{ejj , eij} =
1
2
{eij , e}. (2.14)

This leads to the required result.
Case 10 We show that {eij , ejl} = {eij ◦ ejl, e} for i 6= j, j 6= l and i 6= l, as follows.
In this case, by (e + eij + ejl) ◦ (e− eij − ejl + eil) = e we have that

{e + eij + eil, e− eij − ejl + eil} = {e, e}. (2.15)

Using the known facts that {eij , eij} = {ejl, ejl} = {eil, eil} = {eij , eil} = {eil, ejl} = 0, we
have that

2{eij , ejl} = {e, eil}. (2.16)

This leads to the desired result.
Case 11 We show that {eij , eji} = {eij ◦ eji, e} for i 6= j, as follows.
In this case, by (e− eii − ejj + eij + eji) ◦ (e− eii − ejj + eij + eji) = e we have that

{e− eii − ejj + eij + eji, e− eii − ejj + eij + eji} = {e, e}. (2.17)
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Recalling that {eii, eii} = {e, eii}, {ejj , ejj} = {e, ejj}, {eij , eij} = {eji, eji} = 0, {eii, eij} =
{ejj , eij} = 1

2
{eij , e} and {eii, eji} = {ejj , eji} = 1

2
{eji, e}, we have that

2{eij , eji} = {eii, e}+ {ejj , e}. (2.18)

This follows that {eij , eji} = {eij ◦ eji, e}.
Combining Case 1–Case 11 we conclude that {eij , ekl} = {eij ◦ ekl, e} for each pair eij

and ekl.
Proof of Theorem 1.2 Let {·, ·} be a symmetric bilinear map from M×M to an

R-module X such that {x, y} = {u, v} whenever x ◦ y = u ◦ v = e. It follows from Lemma
2.1 that

{eij , ekl} = {eij ◦ ekl, e}

for each pair of matrix units eij and ekl in M. We now show that {x, y} = {x ◦ y, e} for all
x, y ∈ M. Assume that x = [xij ]n×n, y = [ykl]n×n ∈ Mn(R), express both of them as the
linear combinations of the matrix units

x =
n∑

i=1

n∑
j=1

xijeij , y =
n∑

k=1

n∑
l=1

yklekl.

Since {·, ·} is bilinear we have that

{x, y} =
n∑

i=1

n∑
j=1

n∑
k=1

n∑
l=1

xijykl{eij , ekl} =
n∑

i=1

n∑
j=1

n∑
k=1

n∑
l=1

xijykl{eij ◦ ekl, e} = {x ◦ y, e}.

Thus, if x◦ y = u ◦ v, then {x, y} = {x◦ y, e} = {u ◦ v, e} = {u, v}. This completes the proof.

3 Application of Main Result

In the last decade considerable works have been done concerning characterization of
maps on matrix algebras or operator algebras which preserves zero product (see [8–11]).
Since identity product of elements also plays important role in operator theory we now
characterize the invertible linear maps on the Jordan algebra M which preserve identity
(Jordan) product. We find that by applying Theorem 1.2 this problem is easy to solve.

Corollary 3.1 Assume that the Jordan algebra M and the ring R are as in Theorem
1.2. Let φ be an invertible linear map on M and such that φ fixes e. Then φ preserves
identity (Jordan) product, i.e., φ(x) ◦ φ(y) = e ⇔ x ◦ y = e if and only if φ is a Jordan
automorphism of M, i.e., φ(x ◦ y) = φ(x) ◦ φ(y) for all x, y ∈M.

Proof The sufficient condition is obvious. Now we consider the necessary condition.
Suppose that φ preserves identity (Jordan) product. We define {·, ·} as {x, y} = φ(x) ◦ φ(y)
for x, y ∈M. Then it is a symmetric bilinear map, and if a ◦ b = c ◦ d = e, then

{a, b} = φ(a) ◦ φ(b) = e = φ(c) ◦ φ(d) = {c, d}.



30 Journal of Mathematics Vol. 34

By Theorem 1.2, we know {x, y} = {u, v} whenever x ◦ y = u ◦ v. Now for any x, y ∈ M,
since x ◦ y = (x ◦ y) ◦ e we have

φ(x) ◦ φ(y) = {x, y} = {x ◦ y, e} = φ(x ◦ y) ◦ φ(e) = φ(x ◦ y).

This shows that φ is a Jordan automorphism.
Remark The invertible linear maps on the associative algebra Mn(R) preserving iden-

tity (ordinary) product were described in [12] by using a much direct method. Comparing
with Theorem 2.1 in [12], we find that the proof of above corollary is much easy.
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单位积决定的若当矩阵代数

葛 徽, 李小微

(中国矿业大学理学院,江苏徐州 221116)

摘要: 本文研究了单位积决定的若当矩阵代数M = Mn(R) 的条件及分类问题. 利用基矩阵及巧妙对

对称双线性映射{·, ·} 进行构造和扩充, 用初等矩阵的方法, 获得了一系列新的同样重要的定义, 结论与证

明(与参考文献 [1]相比较), 推广了参考文献 [1]的结论, 作为其应用可以进一步证明了Mn(R) 上的任意可逆

线性映射都是保单位积的.
关键词: 双线性映射; 零积决定的代数; 单位积决定的代数
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