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A CLASS OF IDENTITY PRODUCT DETERMINED
JORDAN ALGEBRAS
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Abstract: In this paper, we investigate the condition and classification of the identity product
determined Jordan matrix algebras M = M, (R). Using the base matrix and the symmetric
bilinear map {-,-} skillfully constructed for this purpose and expansion, only elementary matrix
method is used. Comparing to the reference [1], we obtain a new series of equally important
definition, conclusions and proof improving the conclusions of the reference [1]. As an application
we characterize the invertible linear maps on M which preserve identity (Jordan) product.
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1 Introduction

The concept of zero product determined associative (resp., Lie, Jordan) algebras was
recently introduced by Bresar et al. in [1] and was further studied in [3-7]. The original
motivation for introducing these concepts emerges from the discovery that certain problems
concerning linear maps on algebras, such as describing linear maps preserving commutativity
or zero products, can be effectively treated by first examining bilinear maps satisfying certain
related conditions (see [2] for details).

Let A be an algebra (associative or not) over a commutative ring R with e the identity
element. A is called to be zero product determined (see [1]) if for every R-module X and
for every bilinear map {-,-} : A x A — X, the following two conditions are equivalent:

(i) {x,y} =0 whenever zy = 0;

(ii) there exists a linear map f : A?> — X such that {z,y} = f(zy) for any =,y € A.

In [1], Bresar and others proved that the full matrix algebra M, (R) is always zero
product determined and zero Lie product determined. If 2 is invertible in R and n > 3 then
M, (R) is also zero Jordan product determined (see [1] for details). In [3], Grasi¢ showed that
the Lie algebra of all n xn skew-symmetric matrices over an arbitrary field F' of characteristic

not 2 is zero Lie product determined, as is the simple Lie algebra of the symplectic type over
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the field F. In [4], Gra$i¢ proved that the Jordan algebra of symmetric matrices with respect
to either transpose or symplectic involution is zero product determined. In [5], the main
result of [3] was extended to more general cases. It was shown in [5] that every parabolic
subalgebra of a (finite-dimensional) simple Lie algebra defined over an algebraically closed
field is always zero product determined. In [6], Ma and others introduced a more general
concept called square-zero determined algebra and proved that the algebra of all strictly
upper triangular matrices over a unital commutative ring with 2 being invertible is such an
algebra. Let z € M be a fixed rank one matrix and e the identity matrix. In [7], Long Wang
and others proved that if a bilinear map {-, -} from M x M to an R-module X satisfies the
condition that {z,y} = {e, z} whenever zy = z, then there exists a linear map f: M — M
such that {z,y} = f(xy) for any xz,y € M. In matrix theory, besides zero product of
elements, identity product of elements also plays important role. Inspired by above articles,
we now introduce a new concept as follows.

Definition 1.1 Let A be an algebra (associative or not) over a commutative ring
R with e the identity element. We say that A is identity product determined if for every
R-module X and for every symmetric bilinear map {-,-} : A x A — X the following two
conditions are equivalent:

(i) {z,y} = {u,v} whenever zy = uv = ¢;

(i1) {z,y} = {u,v} for any pairs x,y € A and u,v € A satisfying zy = uv.

Condition (ii) is equivalent to the following condition.

(iii) There exists a linear map f from A? to X such that {z,y} = f(zy) for all z,y € A,
where A? means the algebra spanned by all elements xy.

In fact, (iii) obviously implies (ii). Conversely, if (ii) holds, we define f as f(z) = {z, e},
then f is linear and {x,y} = {zy,e} = f(xy) for all x,y € A. Thus (iii) holds. In this paper
we obtain a result as follows.

Theorem 1.2 Let R be a commutative ring such that 6 € R is invertible. Then the
Jordan algebra M = M, (R) with the Jordan product x oy = % is identity product
determined.

Remark As an associative algebra with the ordinary product, M, (R) is not identity
product determined. To show this, we take X to be M,,(R) itself and define the symmetric
bilinear map {-,-} as {z,y} = 3 (ay + yx). If zy = wvo = ¢, then we have {z,y} = {u,v} =e.
However, {e12, €21} # {e11, €11}, although ej2e2; = e11€11, where e;; denotes the matrix unit

which has 1 at the (¢, ) position and 0 elsewhere, e denotes the identity matrix.

2 Proof of Main Result

For the proof of Theorem 1.2, we need give a lemma firstly.

Lemma 2.1 Let R be a commutative ring with 6 € R being invertible, M = M, (R),
and X be an R-module. For z,y € M, assume that zoy = ZE¥2 is the Jordan product. Let
{*,-} be a symmetric bilinear map from M x M to an R-module X such that {z,y} = {u, v}

whenever z oy =wuowv =e. Then {e;;, e} = {€;j 0 ey, e} for each pair matrix units e;; and



No. 1 A class of identity product determined Jordan algebras 27

€Ll
Proof We divide the proof into several cases.
Case 1 We show that {e;;,e;;} = {es 0ei,e} for i =1,2,... n, as follows.

By (e +e4) o (ef %e“-) =eoe=¢, we have

1
{e+ei,e— 56”} = {e, e}, (2.1)

which implies that
{eii, eii} = {ei, e} = {ei o ei, e} (2.2)
Case 2 We show that {e;;,e;;} = {e;; o e;;, e} for i # j, as follows.

By (e +e;j) o (e — e;j) = eoe = e, we have
{e+eij,e —e;j} ={e e} (2.3)

which implies that {e;;,e;;} = 0. Also, {e;; 0 e;;,e} = 0. Thus the result follows.
Case 3 We show that{e;;, en} = {eij 0oexn, e} fori#j,i#1, k # j, k # 1, as follows.

In this case, since (e + e;; + e) o (e — e;; — ex) = e o e = e we have
{e+e;j+ew,e—ej—en} ={e e} (2.4)

Recalling the facts that {e;;,e;;} = {exr, e} = 0 we have that {e;;,ex} = 0. Also, {e;; o
ex, €} = 0. Thus the result follows.
Case 4 We show that {e;;, e;;} = {ei; 0e;j, e} for i # j, as follows.

Since (e + e;; + €;;) o (e — S — 3€;;) = e we have that
1 1
{6 + € + €55,€ — 5(3“‘ - iejj} = {6, 6}. (25)

Recalling the facts that {e;;, e;} = {e;;,e} and {e;;,e;;} = {e;;, e} we have {e;;,e;;} = 0.
On the other hand, {e;; o e;;,e} = 0. Thus the result holds.
Case 5 We show that {e;;, ex} = {es 0 e, e} for i #k, i # 1 and k # [, as follows.
In this case, by (e + e;; + ex) o (e — 2e; — er) = e we have

1
{e+ e +en,e — §€ii —en} ={e, e} (2.6)

Using the known results that {e;;, e;;} = {ei, e} and {eg, ex;} = 0, we have that %{eii, e} =
0, which implies that {e;;, ex} = O(recalling that 6 is invertible). Thus, {e;;, en} = {ei o
e, e} since {e;; o ey, e} =0.

Case 6 We show that {e;;,e;} = {e;j oey,e} fori+#j,i# [ and j # [, as follows.

In this case, since (e + €;; +€;) o (e — €;; — €;) = e we have
{e+eij+e,e—ej—ey} ={ee}l (2.7)
Using the known results that {e;;,e;;} = {eu,eu} = 0, we have that {e;;,e;} = 0. Thus,

{eij,eat = {eij o eae}, (2.8)
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since {e;j o ey, e} = 0.
Case 7 We show that {e;,e;;} = {eqocej;, e} fori+#j,i# 1 and j# 1, as follows.

In this case, since (e +e; +e;;) o (e — e — e;;) = e we have
{e+ei+eu,e—ey—ei}t=-{ee} (2.9)
Using the known results that {e;;, e, } = {ej;,e;i1} =0, we have that {e;;,e;} = 0. Thus,
{ea, e} = {ei ceje}, (2.10)

since {e;; o ej;, e} = 0.
Case 8 We show that {e;;, e;;} = {ei; 0 e;;,e} for i # j, as follows.
In this case, by (e + e;; + €;5) o (e — %en - %eij) = ¢ we have that

1 1
{e+ei+eije— ¢~ ieij} = {e,e}. (2.11)

Using known results that {e;;, e;;} = {e;; 0 €;,e} = {ei;, e} and {e;;,e;;} = 0 we obtain

1
{eii e} = 5{%7 e}. (2.12)
This leads to the required result.
Case 9 We show that {e;;,e;;} = {e;j 0 e;;,e} for i # j, as follows.
In this case, by (e + ¢;; + €;;) o (e — 1e;; — 3€;;) = e we have that

1 1
{e +ej; +eije— 5605~ §eij} = {e,e}. (2.13)

Using known results that {e;;,e;;} = {e;; oej;,e} = {e;;,e} and {e;j,e;;} = 0 we obtain

{ejj,ei} = %{%‘7 e}. (2.14)

This leads to the required result.
Case 10 We show that {e;;,e;;} = {e;j 0ej, e} for i # j, j #1 and i # [, as follows.

In this case, by (e +e;; +€j;) o (e — e;; — €j; + €;;) = e we have that
{e+eij+e,e—ej—ej+es}={ece} (2.15)

Using the known facts that {e;;,e;;} = {eji,e;} = {ea,eu} = {eij,eu} = {eu, e} =0, we
have that
2{61;]', ejl} = {6, eil}. (216)
This leads to the desired result.
Case 11 We show that {e;;,e;i} = {e;; 0 e;;, e} for i # j, as follows.

In this case, by (e — e;; — €;; + €;; + €;i) o (e — €;; — ;5 + €;; + €;;) = e we have that

{6 — € — €jj + eij + eji, € — € — €jj = 67;j =4 eji} = {6, 6}. (217)
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Recalling that {e;i,e;i} = {e, eii}, {55, €55} = {e, 55}, {eij, €55} = {eji, 5} =0, {ew, €55} =
{6jj7 el-j} = %{eij, 6} and {6“‘,6]‘1‘} = {6jj7eji} = %{eji, 6}7 we have that

2{eij,eji} = {ei, e} + {ej;, e}. (2.18)

This follows that {e;;,e;;} = {e;j 0 ej;, e}

Combining Case 1-Case 11 we conclude that {e;;, ex} = {e;; o ex, e} for each pair e;;
and ey;.

Proof of Theorem 1.2 Let {-,-} be a symmetric bilinear map from M x M to an
R-module X such that {z,y} = {u,v} whenever z oy = uowv = e. It follows from Lemma
2.1 that

{eija ekl} = {eij © sz,e}

for each pair of matrix units e;; and ey in M. We now show that {z,y} = {z oy, e} for all
x,y € M. Assume that = [Zi]nxn, ¥ = [Ukilnxn € My(R), express both of them as the

linear combinations of the matrix units

n

n n n
T = Z injeij, Yy = Z Zykzekl-

i=1 j=1 k=1 1=1

Since {-, -} is bilinear we have that

{x,y} = ZZZ injykl{eij,ekz} = Zzzzﬂfzjykz{eij © €kz,€} = {37 © ?Jve}-

i=1 j=1 k=1 I=1 i=1 j=1 k=1 I=1

Thus, if xoy = uowv, then {z,y} = {xoy,e} = {uov,e} = {u,v}. This completes the proof.

3 Application of Main Result

In the last decade considerable works have been done concerning characterization of
maps on matrix algebras or operator algebras which preserves zero product (see [8-11]).
Since identity product of elements also plays important role in operator theory we now
characterize the invertible linear maps on the Jordan algebra M which preserve identity
(Jordan) product. We find that by applying Theorem 1.2 this problem is easy to solve.

Corollary 3.1 Assume that the Jordan algebra M and the ring R are as in Theorem
1.2. Let ¢ be an invertible linear map on M and such that ¢ fixes e. Then ¢ preserves
identity (Jordan) product, i.e., ¢(z) o ¢p(y) = e < woy = e if and only if ¢ is a Jordan
automorphism of M, i.e., ¢(z oy) = ¢(x) o ¢(y) for all z,y € M.

Proof The sufficient condition is obvious. Now we consider the necessary condition.
Suppose that ¢ preserves identity (Jordan) product. We define {-, -} as {z,y} = ¢(z) o ¢(y)
for x,y € M. Then it is a symmetric bilinear map, and if aob = cod = e, then

{a,b} = ¢(a) 0 ¢(b) = e = ¢(c) 0 ¢(d) = {c, d}.
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By Theorem 1.2, we know {z,y} = {u,v} whenever z oy = uowv. Now for any =,y € M,

since z oy = (z o y) o e we have

¢(x) o p(y) = {z,y} ={zoy,e} = p(xoy) o d(e) = p(x o y).

This shows that ¢ is a Jordan automorphism.
Remark The invertible linear maps on the associative algebra M, (R) preserving iden-
tity (ordinary) product were described in [12] by using a much direct method. Comparing

with Theorem 2.1 in [12], we find that the proof of above corollary is much easy.
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