THE DRAZIN INVERSE OF A MODIFIED MATRIX $A - CB$

CUI Run-qing1, LI Xing-lan1, GAO Jing-li2

(1. School of Math. and Infor. Science, Henan Polytechnic University, Jiaozuo 454003, China)
(2. Dept. of Basic, Henan Mechanical and Electrical Vocational College, Xinzheng 451191, China)

Abstract: In this paper, we study the representations of the Drazin inverse of a modified matrix $A - CB$. By the properties of the k-idempotent matrix and the diagonalizable matrix, we get some new representations of the Drazin inverse through weakened conditions of literature [4].

Keywords: modified matrix; Drazin inverse; Schur complement

2010 MR Subject Classification: 15A09

Document code: A Article ID: 0255-7797(2014)01-0012-05

1 Introduction

The problem of the Drazin inverse was discussed widely in [1–12]. The Drazin inverse was used to be applied in sigular differential difference equations, Markov chains and numerical analysis in [1–3]. The Drazin inverse of the modified matrices was studied by many people [4–6], as a modified matrix can be seen as the sum of two matrices or a matrix added a perturbed element. In [4], Wei Yiming gave the expression for the Drazin inverse of $A - CB$; Liu Xifu weakened the condition of [4] and gave another expression in [5]; the Drazin inverse of $A - CD^D B$ was given in [6]. In this paper, we weaken the conditions of [4–5] and give different results.

2 Definitions and Basic Results

Definition 2.1 Let $\mathbb{C}^{n \times n}$ denote the set of $n \times n$ complex matrices. The Drazin inverse of $A \in \mathbb{C}^{n \times n}$ is the unique matrix A^D satisfying the relations:

$$A^D A A^D = A^D, \quad A^D A = A A^D, \quad A^{k+1} A^D = A^k,$$

where k is the smallest non-negative integer such that $\text{rank}(A^k) = \text{rank}(A^{k+1})$, i.e., $k = \text{ind}(A)$, the index of A. The case when $\text{ind}(A) = 1$, the Drazin inverse is called the group inverse of A and it is denoted by $A^\#$. We denote by A^π corresponding to the eigenvalue 0 that is given by $A^\pi = I - AA^D$.

Received date: 2012-11-10 Accepted date: 2013-03-28

Foundation item: Supported by National Natural Science Foundation of China (10671182); Henan Province Key Disciplines of Applied Mathematics.

Biography: Cui Runqing (1966–), male, born at Yanshi, Henan, associate professor, major in matrix theory. E-mail: cuirunqing@hpu.edu.cn.
Lemma 2.2 [4] Suppose \(P = 0, Q = 0 \) and \(C(I - ZZ^D)B = 0 \). Then
\[
(A - CB)^D = A^D + KZ^DH, \tag{2.2}
\]
where denote \(K = AD, H = BA^D, Z = I - BA^DC, P = (I - AA^D)C \) and \(Q = B(I - A^D) \).

Lemma 2.3 [5] Let \(A \) be an idempotent matrix, suppose \(P = 0, \) ind\((Z) = k, \) then
\[
(A - CB)^D = A + CZ^D H - C(Z^D)^2\sum_{i=0}^{k-1} Z^i H, \tag{2.3}
\]
where denote \(K = AC, H = BA, Z = I - BAC, P = (I - A)C \) and \(Q = B(I - A), \) especially, \(Z = I - BC \) at here.

Lemma 2.4 [6] Let \(A, B, C \) and \(D \) be complex matrices, where ind\((A) = k, \) If \(A^p C = 0, \)
\(CZ^p = 0, Z^p B = 0, CD^p = 0 \) and \(D^p B = 0, \) then
\[
(A - CD^p B)^D = A^D + AD^p C Z^D BA^D - \sum_{i=0}^{k-1} (A^p + AD^p C Z^D BA^D)^{i+1} A^p C Z^D BA^i A^p, \tag{2.4}
\]
where denote the schur complement \(Z = D - BA^D C, \) furthermore, ind\((A - CD^p B) \leq \) ind\((A). \)

3 Main Theorems and Proofs

First, we definite some notation similar to the reference [4]. Let
\[
K = AD, H = BA^D, \quad \Gamma = HK, \quad Z = I - BA^DC \tag{3.1}
\]
and
\[
P = (I - AA^D)C, \quad Q = B(I - A^D). \tag{3.2}
\]

Theorem 3.1 Let \(A, B \) and \(C \) be complex matrices, where ind\((A) = k, \) If \(A^p C = 0 \)
and \(CZ^p B = 0, \) then
\[
(A - CB)^D = A^D + KZ^DH - \sum_{i=0}^{k-1} (A^D + KZ^DH)^{i+1} KZ^D BA^i A^p. \tag{3.3}
\]
furthermore, ind\((A - CB) \leq \) ind\((A). \)

Proof Let \(X = A^D + KZ^DH - \sum_{i=0}^{k-1} (A^D + KZ^DH)^{i+1} KZ^D BA^i A^p. \) Then,
\[
(A - CB) X = (A - CB)[A^D + KZ^DH - \sum_{i=0}^{k-1} (A^D + KZ^DH)^{i+1} KZ^D BA^i A^p]
\]
\[
= (A - CB)(A^D + KZ^DH) - (A - CB)(A^D + KZ^DH) \sum_{i=0}^{k-1} (A^D + KZ^DH)^i KZ^D BA^i A^p
\]
\[
= AA^D - AA^D \sum_{i=0}^{k-1} (A^D + KZ^DH)^i KZ^D BA^i A^p
\]
\[
= AA^D - \sum_{i=0}^{k-1} (A^D + KZ^DH)^i KZ^D BA^i A^p. \tag{3.4}
\]
At the same time, we get

\[X(A - CB) = [A^D + KZ^DH - \sum_{i=0}^{k-1} (A^D + KZ^DH)^{i+1} KZ^DBA^iA^\pi](A - CB) \]

\[\begin{align*}
 &= (A^D + KZ^DH)(A - CB) \\
 &\quad - \sum_{i=0}^{k-1} (A^D + KZ^DH)^{i+1} KZ^DBA^iA^\pi(A - CB) \\
 &= AA^D - A^D CZ^DBA^\pi - \sum_{i=0}^{k-1} (A^D + KZ^DH)^{i+1} KZ^DBA^{i+1}A^\pi \\
 &= AA^D - \sum_{i=0}^{k-1} (A^D + KZ^DH)^i KZ^DBA^iA^\pi. \\
\end{align*} \] (3.5)

From (3.4) and (3.5) it follows that \((A - CB)X = X(A - CB)\).

Now, using (3.5) and \(A^\pi X = 0\), we obtain

\[\begin{align*}
 (X(A - CB) - I)X &= 0, \\
\end{align*} \]

i.e., \((A - CB)X = X\).

Finally, we will prove that \((A - CB) - (A - CB)^2 X\) is a nilpotent matrix. Using \(A^\pi C = 0, CZ^\pi B = 0\), and expressions (3.4) conveniently, it can be proved that

\[(A - CB) - (A - CB)^2 X = AA^\pi + \sum_{i=0}^{k-1} (A^D + KZ^DH)^i KZ^DBA^{i+1}A^\pi. \]

by induction on integer \(j \geq 1\), we have

\[[(A - CB) - (A - CB)^2 X]^j = A^jA^\pi + \sum_{i=0}^{k-1} (A^D + KZ^DH)^i KZ^DBA^{i+j}A^\pi. \]

Then we get

\[[(A - CB) - (A - CB)^2 X]^k = 0. \] (3.6)

where \(k = \text{ind}(A)\). Therefore, we get \((A - CB)^{k+1} X = (A - CB)^k X\) and \(\text{ind}(A - CB) \leq \text{ind}(A)\).

The theorem is proved completely.

Corollary 3.2 Let \(A, B\) and \(C\) be complex matrices, where \(\text{ind}(A) = k\). If \(BA^\pi = 0\) and \(CZ^\pi B = 0\), then

\[(A - CB)^D = A^D + KZ^DH - \sum_{i=0}^{k-1} KZ^DBA^iA^\pi(A^D + KZ^DH)^{i+1}, \] (3.7)

Furthermore, \(\text{ind}(A - CB) \leq \text{ind}(A)\).

Proof The proof is similar to Theorem 3.1.
In the reference [5], it was discussed the Drazin inverse of a modified matrix \(A - CB \), where \(A \) is an idempotent matrix (Lemma 2.3). In this paper we will consider the consequence when \(A \) is a \(k \)-idempotent matrix.

When \(A \) is a \(k \)-idempotent matrix, we can easily proof \(A^D = A^{k-2} \). Then, we can change notations (3.1) and (3.2) to be

\[
K = A^{k-2}C, \quad H = BA^{k-2}, \quad \Gamma = HK, \quad Z = I - BA^{k-2}C, \quad (3.8)
\]
\[
P = (I - A^{k-1})C, \quad Q = B(I - A^{k-1}). \quad (3.9)
\]

Theorem 3.3 Let \(A \) be a \(k \)-idempotent matrix, suppose \(AC = C \), \(\text{ind}(Z) = k \), then

\[
(A - CB)^D = A^{k-2} + KZ^DH - K(Z^D)^2Q - KZ\sum_{i=0}^{k-1}Z^iH. \quad (3.10)
\]

Proof The proof is similar to Theorem 3.1.

Corollary 3.4 Let \(A \) be a \(k \)-idempotent matrix, suppose \(BA = B \), \(\text{ind}(Z) = k \), then

\[
(A - CB)^D = A^{k-2} + KZ^DH - P(Z^D)^2H - \sum_{i=0}^{k-1}KZ^iZ\pi H. \quad (3.11)
\]

Proof The proof is similar to Theorem 3.1.

Theorem 3.5 Let \(A, B, C \) be diagonalizable. Suppose \(A, B, C \) commute,

\[
\text{rank}(A) = \text{rank}(B) = \text{rank}(C)
\]
and \(\sigma(A) \cap \sigma(BC) = \emptyset \), then

\[
(A - CB)^D = A^D + A^DC(I - BA^D C)^D BA^D, \quad (3.12)
\]

where \(\sigma(A) \) is the eigenvalues of \(A \).

Proof Because \(A, B \) and \(C \) are diagonalizable and they can commute, there is a nonsingular matrix \(S \) such that \(S^{-1}AS, S^{-1}BS, S^{-1}CS \) are diagonal. We denote

\[
S^{-1}AS = \begin{bmatrix}
\Lambda_1 & 0 \\
0 & 0
\end{bmatrix}, \quad S^{-1}BS = \begin{bmatrix}
\Lambda_2 & 0 \\
0 & 0
\end{bmatrix}, \quad S^{-1}CS = \begin{bmatrix}
\Lambda_3 & 0 \\
0 & 0
\end{bmatrix},
\]

where each of matrices \(\Lambda_1, \Lambda_2 \) and \(\Lambda_3 \) is full rank diagonal and its diagonal line elements are eigenvalues. Their rank is equal to \(A \). Then

\[
(A - CB)^D = S \begin{bmatrix}
(\Lambda_1 - \Lambda_3 \Lambda_2)^{-1} & 0 \\
0 & 0
\end{bmatrix} S^{-1},
\]
as \(\sigma(A) \cap \sigma(BC) = \emptyset \), \(\Lambda_1 - \Lambda_3 \Lambda_2 \) is nonsingular. At the same time, we have

\[
A^D + A^DC(I - BA^DC)^D BA^D = S \begin{bmatrix}
\Lambda_1^{-1} + \Lambda_1^{-1} \Lambda_3(I - \Lambda_2 \Lambda_1^{-1} \Lambda_3)^{-1} \Lambda_2 \Lambda_1^{-1} & 0 \\
0 & 0
\end{bmatrix} S^{-1}
\]
and

\[
(\Lambda_1 - \Lambda_3 \Lambda_2)^{-1} = \Lambda_1^{-1} + \Lambda_1^{-1} \Lambda_3(I - \Lambda_2 \Lambda_1^{-1} \Lambda_3)^{-1} \Lambda_2 \Lambda_1^{-1}, \quad (3.13)
\]
so we have \((A - CB)^D = A^D + A^DC(I - BA^D C)^D BA^D \).
References

修正矩阵$A - CB$的Drazin逆

崔润卿\(^1\), 李幸兰\(^1\), 高景丽\(^2\)

\(^1\)河南理工大学数学与信息科学学院，河南 焦作 454003
\(^2\)河南机电职业学院基础部，河南 新郑 451191

摘要：本文研究了修正矩阵Drazin逆的表示形式，利用k次方等矩阵和对角化矩阵的性质，减弱了文献[4]中的条件，获得了新的Drazin逆的表示形式。

关键词：修正矩阵; Drazin 逆; Schur 补

MR(2010)主题分类号: 15A09 中图分类号: O151.21