THE DRAZIN INVERSE OF A MODIFIED MATRIX $A-C B$

CUI Run－qing ${ }^{1}$ ，LI Xing－lan ${ }^{1}$ ，GAO Jing－li ${ }^{2}$
（1．School of Math．and Infor．Science，Henan Polytechnic University，Jiaozuo 454003，China）
（2．Dept．of Basic，Henan Mechanical and Electrical Vocational College，Xinzheng 451191，China）

Abstract

In this paper，we study the representations of the Drazin inverse of a modified matrix $A-C B$ ．By the properties of the k－idempotent matrix and the diagonalizable matrix，we get some new representations of the Drazin inverse through weakened conditions of literature［4］．

Keywords：modified matrix；Drazin inverse；Schur complement 2010 MR Subject Classification：15A09 Document code：A Article ID：0255－7797（2014）01－0012－05

1 Introduction

The problem of the Drazin inverse was discussed widely in［1－12］．The Drazin inverse was used to be applied in sigular differential difference equations，Markov chains and nu－ merical analysis in $[1-3]$ ．The Drazin inverse of the modified matrices was studied by many people［4－6］，as a modified matrix can be seen as the sum of two matrices or a matrix added a perturbed element．In［4］，Wei Yiming gave the expression for the Drazin inverse of $A-C B$ ； Liu Xifu weakened the condition of［4］and gave another expression in［5］；the Drazin inverse of $A-C D^{D} B$ was given in［6］．In this paper，we weaken the conditions of［4－5］and give different results．

2 Definitions and Basic Results

Definition 2．1 Let $\mathbb{C}^{n \times n}$ denote the set of $n \times n$ complex matrices．The Drazin inverse of $A \in \mathbb{C}^{n \times n}$ is the unique matrix A^{D} satisfying the relations：

$$
\begin{equation*}
A^{D} A A^{D}=A^{D}, \quad A^{D} A=A A^{D}, \quad A^{k+1} A^{D}=A^{k} \tag{2.1}
\end{equation*}
$$

where k is the smallest non－negative integer such that $\operatorname{rank}\left(A^{k}\right)=\operatorname{rank}\left(A^{k+1}\right)$ ，i．e．，$k=\operatorname{ind}(A)$ ， the index of A ．The case when $\operatorname{ind}(A)=1$ ，the Drazin inverse is called the group inverse of A and it is denoted by $A^{\#}$ ．We denote by A^{π} corresponding to the eigenvalue 0 that is given by $A^{\pi}=I-A A^{D}$ ．

[^0]Lemma 2.2 [4] Suppose $P=0, Q=0$ and $C\left(I-Z Z^{D}\right) B=0$. Then

$$
\begin{equation*}
(A-C B)^{D}=A^{D}+K Z^{D} H \tag{2.2}
\end{equation*}
$$

where denote $K=A^{D} C, H=B A^{D}, Z=I-B A^{D} C, P=\left(I-A A^{D}\right) C$ and $Q=B\left(I-A^{D} A\right)$.
Lemma 2.3 [5] Let A be an idempotent matrix, suppose $P=0, \operatorname{ind}(Z)=k$, then

$$
\begin{equation*}
(A-C B)^{D}=A+C Z^{D} H-C\left(Z^{D}\right)^{2} Q-C Z^{\pi} \sum_{i=0}^{k-1} Z^{i} H \tag{2.3}
\end{equation*}
$$

where denote $K=A C, H=B A, Z=I-B A C, P=(I-A) C$ and $Q=B(I-A)$, especially, $Z=I-B C$ at here.

Lemma 2.4 [6] Let A, B, C and D be complex matrices, where $\operatorname{ind}(A)=k$. If $A^{\pi} C=0$, $C Z^{\pi}=0, Z^{\pi} B=0, C D^{\pi}=0$ and $D^{\pi} B=0$, then

$$
\begin{equation*}
\left(A-C D^{D} B\right)^{D}=A^{D}+A^{D} C Z^{D} B A^{D}-\sum_{i=0}^{k-1}\left(A^{D}+A^{D} C Z^{D} B A^{D}\right)^{i+1} A^{D} C Z^{D} B A^{i} A^{\pi} \tag{2.4}
\end{equation*}
$$

where denote the schur complement $Z=D-B A^{D} C$, furthermore, $\operatorname{ind}\left(A-C D^{D} B\right) \leq$ $\operatorname{ind}(A)$.

3 Main Theorems and Proofs

First, we definite some notation similar to the reference [4]. Let

$$
\begin{equation*}
K=A^{D} C, \quad H=B A^{D}, \quad \Gamma=H K, \quad Z=I-B A^{D} C \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
P=\left(I-A A^{D}\right) C, \quad Q=B\left(I-A^{D} A\right) . \tag{3.2}
\end{equation*}
$$

Theorem 3.1 Let A, B and C be complex matrices, where $\operatorname{ind}(A)=k$. If $A^{\pi} C=0$ and $C Z^{\pi} B=0$, then

$$
\begin{equation*}
(A-C B)^{D}=A^{D}+K Z^{D} H-\sum_{i=0}^{k-1}\left(A^{D}+K Z^{D} H\right)^{i+1} K Z^{D} B A^{i} A^{\pi} \tag{3.3}
\end{equation*}
$$

furthermore, $\operatorname{ind}(A-C B) \leq \operatorname{ind}(A)$.
Proof Let $X=A^{D}+K Z^{D} H-\sum_{i=0}^{k-1}\left(A^{D}+K Z^{D} H\right)^{i+1} K Z^{D} B A^{i} A^{\pi}$. Then,

$$
\begin{align*}
& (A-C B) X=(A-C B)\left[A^{D}+K Z^{D} H-\sum_{i=0}^{k-1}\left(A^{D}+K Z^{D} H\right)^{i+1} K Z^{D} B A^{i} A^{\pi}\right] \\
= & (A-C B)\left(A^{D}+K Z^{D} H\right)-(A-C B)\left(A^{D}+K Z^{D} H\right) \sum_{i=0}^{k-1}\left(A^{D}+K Z^{D} H\right)^{i} K Z^{D} B A^{i} A^{\pi} \\
= & A A^{D}-A A^{D} \sum_{i=0}^{k-1}\left(A^{D}+K Z^{D} H\right)^{i} K Z^{D} B A^{i} A^{\pi} \\
= & A A^{D}-\sum_{i=0}^{k-1}\left(A^{D}+K Z^{D} H\right)^{i} K Z^{D} B A^{i} A^{\pi} . \tag{3.4}
\end{align*}
$$

At the same time, we get

$$
\begin{align*}
X(A-C B)= & {\left[A^{D}+K Z^{D} H-\sum_{i=0}^{k-1}\left(A^{D}+K Z^{D} H\right)^{i+1} K Z^{D} B A^{i} A^{\pi}\right](A-C B) } \\
= & \left(A^{D}+K Z^{D} H\right)(A-C B) \\
& -\sum_{i=0}^{k-1}\left(A^{D}+K Z^{D} H\right)^{i+1} K Z^{D} B A^{i} A^{\pi}(A-C B) \\
= & A A^{D}-A^{D} C Z^{D} B A^{\pi}-\sum_{i=0}^{k-1}\left(A^{D}+K Z^{D} H\right)^{i+1} K Z^{D} B A^{i+1} A^{\pi} \\
= & A A^{D}-\sum_{i=0}^{k-1}\left(A^{D}+K Z^{D} H\right)^{i} K Z^{D} B A^{i} A^{\pi} . \tag{3.5}
\end{align*}
$$

From (3.4) and (3.5) it follows that $(A-C B) X=X(A-C B)$.
Now, using (3.5) and $A^{\pi} X=0$, we obtain

$$
(X(A-C B)-I) X=0
$$

i.e., $X(A-C B) X=X$.

Finally, we will prove that $(A-C B)-(A-C B)^{2} X$ is a nilpotent matrix. Using $A^{\pi} C=0, C Z^{\pi} B=0$, and expressions (3.4) conveniently, it can be proved that

$$
(A-C B)-(A-C B)^{2} X=A A^{\pi}+\sum_{i=0}^{k-1}\left(A^{D}+K Z^{D} H\right)^{i} K Z^{D} B A^{i+1} A^{\pi}
$$

by induction on integer $j \geq 1$, we have

$$
\left[(A-C B)-(A-C B)^{2} X\right]^{j}=A^{j} A^{\pi}+\sum_{i=0}^{k-1}\left(A^{D}+K Z^{D} H\right)^{i} K Z^{D} B A^{i+j} A^{\pi}
$$

Then we get

$$
\begin{equation*}
\left[(A-C B)-(A-C B)^{2} X\right]^{k}=0 \tag{3.6}
\end{equation*}
$$

where $k=\operatorname{ind}(A)$. Therefore, we get $(A-C B)^{k+1} X=(A-C B)^{k}$ and $\operatorname{ind}(A-C B) \leq \operatorname{ind}(A)$. The theorem is proved completely.

Corollary 3.2 Let A, B and C be complex matrices, where $\operatorname{ind}(A)=k$. If $B A^{\pi}=0$ and $C Z^{\pi} B=0$, then

$$
\begin{equation*}
(A-C B)^{D}=A^{D}+K Z^{D} H-\sum_{i=0}^{k-1} K Z^{D} B A^{i} A^{\pi}\left(A^{D}+K Z^{D} H\right)^{i+1} \tag{3.7}
\end{equation*}
$$

furthermore, $\operatorname{ind}(A-C B) \leq \operatorname{ind}(A)$.
Proof The proof is similar to Theorem 3.1.

In the reference [5], it was discussed the Drazin inverse of a modified matrix $A-$ $C B$, where A is an idempotent matrix (Lemma 2.3). In this paper we will consider the consequence when A is a k-idempotent matrix.

When A is a k-idempotent matrix, we can easily proof $A^{D}=A^{k-2}$. Then, we can change notations (3.1) and (3.2) to be

$$
\begin{align*}
& K=A^{k-2} C, \quad H=B A^{k-2}, \quad \Gamma=H K, \quad Z=I-B A^{k-2} C \tag{3.8}\\
& P=\left(I-A^{k-1}\right) C, \quad Q=B\left(I-A^{k-1}\right) \tag{3.9}
\end{align*}
$$

Theorem 3.3 Let A be a k-idempotent matrix, suppose $A C=C, \operatorname{ind}(Z)=k$, then

$$
\begin{equation*}
(A-C B)^{D}=A^{k-2}+K Z^{D} H-K\left(Z^{D}\right)^{2} Q-K Z^{\pi} \sum_{i=0}^{k-1} Z^{i} H \tag{3.10}
\end{equation*}
$$

Proof The proof is similar to Theorem 3.1.
Corollary 3.4 Let A be a k-idempotent matrix, suppose $B A=B$, $\operatorname{ind}(Z)=k$, then

$$
\begin{equation*}
(A-C B)^{D}=A^{k-2}+K Z^{D} H-P\left(Z^{D}\right)^{2} H-\sum_{i=0}^{k-1} K Z^{i} Z^{\pi} H \tag{3.11}
\end{equation*}
$$

Proof The proof is similar to Theorem 3.1.
Theorem 3.5 Let A, B, C be diagonalizable. Suppose A, B, C commute,

$$
\operatorname{rank}(A)=\operatorname{rank}(B)=\operatorname{rank}(C)
$$

and $\sigma(A) \cap \sigma(B C)=\varnothing$, then

$$
\begin{equation*}
(A-C B)^{D}=A^{D}+A^{D} C\left(I-B A^{D} C\right)^{D} B A^{D}, \tag{3.12}
\end{equation*}
$$

where $\sigma(A)$ is the eigenvalues of A.
Proof Because A, B and C are diagonalizable and they can commute, there is a nonsingular matrix S such that $S^{-1} A S, S^{-1} B S, S^{-1} C S$ are diagonal. We denote

$$
S^{-1} A S=\left[\begin{array}{cc}
\Lambda_{1} & o \\
o & o
\end{array}\right] \quad S^{-1} B S=\left[\begin{array}{cc}
\Lambda_{2} & o \\
o & o
\end{array}\right] \quad S^{-1} C S=\left[\begin{array}{cc}
\Lambda_{3} & o \\
o & o
\end{array}\right]
$$

where each of matrices Λ_{1}, Λ_{2} and Λ_{3} is full rank diagonal and its diagonal line elements are eigenvalues. Their rank is equal to A. Then

$$
(A-C B)^{D}=S\left[\begin{array}{cc}
\left(\Lambda_{1}-\Lambda_{3} \Lambda_{2}\right)^{-1} & o \\
o & o
\end{array}\right] S^{-1}
$$

as $\sigma(A) \cap \sigma(B C)=\varnothing, \Lambda_{1}-\Lambda_{3} \Lambda_{2}$ is nonsingular. At he same time, we have

$$
A^{D}+A^{D} C\left(I-B A^{D} C\right)^{D} B A^{D}=S\left[\begin{array}{cc}
\Lambda_{1}^{-1}+\Lambda_{1}^{-1} \Lambda_{3}\left(I-\Lambda_{2} \Lambda_{1}^{-1} \Lambda_{3}\right)^{-1} \Lambda_{2} \Lambda_{1}^{-1} & o \\
o & o
\end{array}\right] S^{-1}
$$

and

$$
\begin{equation*}
\left(\Lambda_{1}-\Lambda_{3} \Lambda_{2}\right)^{-1}=\Lambda_{1}^{-1}+\Lambda_{1}^{-1} \Lambda_{3}\left(I-\Lambda_{2} \Lambda_{1}^{-1} \Lambda_{3}\right)^{-1} \Lambda_{2} \Lambda_{1}^{-1} \tag{3.13}
\end{equation*}
$$

so we have $(A-C B)^{D}=A^{D}+A^{D} C\left(I-B A^{D} C\right)^{D} B A^{D}$.

References

［1］Wei Y．Index splitting for the Drazin inverse and the sigular linear system［J］．Appl．Math．Comput．， 1998，95：115－124．
［2］Wei Y．On the perturbation of the group inverse and oblique projection［J］．Appl．Math．Comput．， 1999，98：29－42．
［3］Wei Y，Wang G．The perturbation theory for the Drazin inverse and its applications［J］．Linear Algebra Appl．，1997，258：179－186．
［4］Wei Yimin．The Drazin inverse of a modified matrix［J］．Applied Mathematics and Computation， 2002，125：295－301．
［5］Liu Xifu．The Drazin inverse of a modified matrix［J］．Journal of Southwest University（Natural Science Edition），2012，34（6）：74－77．
［6］Dopazo E，Martínez－Serrano M F．On deriving the Drazin inverse of a modified matrix［J］．Linear Algebre Appl．，2011，in press．
［7］Cvetkovic－Ilic D S，Wei Y．Representations for the Drazin inverse of bounded operators on Banach space［J］．Electron．Linear Algebra，2009，18：613－627．
［8］Hartwig R E，Li X，Wei Y．Representations for the Drazin inverse of 2×2 block matrix［J］．Matrix Anal．Appl．，2006，27：757－771．
［9］Martínez－Serrano M F，Castro－González N．On the Drazin inverse of block matrices and generalized Schur complement［J］．Appl．Math．Comput．，2009，215：2733－2740．
［10］Wei Y．The Drazin inverse of updating of a square matrix with application to perturbation formula ［J］．Appl．Math．Comput．，2000，108：77－83．
［11］Deng C Y．On the invertibility of the operator $A-X B$ numer［J］．Linear Algebra Appl．，2009，16： 817－831．
［12］Hartwig R E，Wang G，Wei Y．Some additive results on the Drazin inverse［J］．Linear Algebra Appl．， 2001，322：207－217．

修正矩阵 $A-C B$ 的Drazin逆

> 崔润卿 1, 李幸兰 1, 高景丽 ${ }^{2}$
> (1.河南理工大学数学与信息科学学院, 河南 焦作 454003)
> (2.河南机电职业学院基础部, 河南 新郑 451191)

摘要：本文研究了修正矩阵Drazin逆的表示形式．利用 k 次幂等矩阵和可对角化矩阵的性质，减弱了文献［4］中的条件，获得了新的Drazin逆的表示形式。

关键词：修正矩阵；Drazin 逆；Schur 补
MR（2010）主题分类号：15A09 中图分类号：O151．21

[^0]: ＊Received date：2012－11－10 Accepted date：2013－03－28
 Foundation item：Supported by National Natural Science Foundation of China（10671182）；Henan Province Key Disciplines of Applied Mathematics．

 Biography：Cui Runqing（1966－），male，born at Yanshi，Henan，associate professor，major in matrix theory．E－mail：cuirunqing＠hpu．edu．cn．

