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Abstract: Comparison theorem for solutions of one-dimensional backward stochastic equa-

tion (BSDE for short) was first established by Peng [1]. In this paper, we study the BSDEs driven

by continuous semi-martingale satisfying Lipschitz condition. We generalize the comparison theo-

rem to this case and prove it by using techniques which are different from those of Peng [1]. Our

method is more direct and simpler.
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1 Introduction

The backward stochastic differential equations (BSDEs) theory was a focus of great
interest in recent years. To solve a classical BSDE, we look for a couple of processes (y, z)
which satisfies the equation

yt = ξ +
∫ T

t

f(s, ys, zs)ds−
∫ T

t

zsdBs, 0 ≤ t ≤ T, (1)

where T > 0 is a finite constant termed the time horizon, ξ is a one-dimensional random
variable termed the terminal condition, the random function f : Ω × [0, T ] × R × R → R

is progressively measurable for each (y, z) termed the generator of the BSDE (1), and B is
a d-dimensional Brownian motion. The solution (y, z) is a pair of adapted processes. The
triple (ξ, T, f) is called the coefficients (parameters) of the BSDE (1).

The classical BSDE theory is taken the Brownian motion as the noise source, but the
Brown motion is one kind of extreme idealized model, which causes the classical BSDE
theory to receive certain limit in the application. Therefore, many scholars try to study
the BSDE driven by other noise. For example, the corresponding work can be referenced
in　Situ (1997), Wang (1999), Nualart and Schoutens (2001), Bahlali (2003), Li (2005) and
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Ren and Hu (2007). In particular, existence and uniqueness results of the solutions of BSDE
with continuous semi-martingle under Lipschitz condition were obtained by Wang (1999).

The comparison theorems, which are an important and effective technique in the theory
of SDE, were established by Peng [1] and Cao-Yan [3]. In this paper, we generalize their com-
parison theorems to the case where the BSDEs were driven by continuous semi-martingale.

2 Preliminaries and Lemmas

Let us first introduce some assumptions and notations, which we will use in this paper.
For what follows, let us fix a number 0 < T < +∞. Let (Wt)(t≤T ) be the standard d-
dimensional Brownian motion defined on the canonical space (Ω,FT , (Ft)(t≤T ), P ), where
T < +∞ is a fixed time.We shall denote by P, the predictable σ-field. Let M2

c be the
continuous square-integrable martingale space. Let S2 denote the set of Ft-adapted càdlàg
Rm-valued process {Xt, 0 ≤ t ≤ T} with the property

‖X‖S2 = (E[ sup
0≤t≤T

‖Xt‖2)1/2 < +∞.

Let L2(W ) be the set of Ft-predictable Rd-valued processes {Zt, 0 ≤ t ≤ T} which satisfy

‖Z‖L2(W ) = (E
∫ T

0

|Zt|2d〈M〉t)1/2 < +∞.

In this paper, we consider the following one-dimensional backward stochastic differential
equation

Yt = ξ +
∫ T

t

f(s, Ys, Zs)d〈M〉s + AT −At −
∫ T

t

ZsdMs, 0 ≤ t ≤ T, (2)

where t ∈ [0, T ], ξ an FT -measurable and square-integrable random variable, M ∈ M2
c ,M0 =

0, (At)(0≤t≤T ) an Ft-adapted càdlàg process and f : Ω×[0, T ]×R×Rd → R a P⊗
B(Rd+1)

measurable function, which satisfies
(H.1) f(•, 0, 0) ∈ L2(W );
(H.2) Lipschitz conditions: there exist C > 0 such that

|f(t, x1, y1)− f(t, x2, y2)| ≤ C(|x1 − x2|+ |y1 − y2|) a.s. ∀t ∈ [0, T ], x1, x2, y1, y2 ∈ R.

For given (ξ, f, A), the solution to BSDE (2) means a pair of process (Y, Z) in S2
⊗

L2(W )
which satisfies (2). Under the above conditions on f , Wang [2] proved the existence and
uniqueness of the solutions of BSDE (2). We shall generalize the comparison theorem to the
case and prove it by using techniques which are different from those of Peng. Our method
is more direct and simpler.

3 A Comparison Theorem

Our main result is the following:
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Theorem 3.1 Let (Y i, Zi) ∈ S2 × L2(W ), i = 1, 2 be the unique solutions to the
following equations:

Y 1
t = ξ1 +

∫ T

t

f1(s, Y 1
s , Z1

s )d〈M〉s + A1
T −A1

t −
∫ T

t

Z1
s dMs, 0 ≤ t ≤ T (3)

and

Y 2
t = ξ2 +

∫ T

t

f2(s, Y 2
s , Z2

s )d〈M〉s + A2
T −A2

t −
∫ T

t

Z2
s dMs, 0 ≤ t ≤ T, (4)

where ξi ∈ L2(Ω,FT , P ), i = 1, 2, f1 satisfies (H.1) and (H.2), f2 is a progressively mea-
sureable process such that E

∫ T

0
|f2

t |2d〈M〉t < +∞, Ai ∈ S2, Ai
0 = 0.

(i) If ξ1 ≤ ξ2 a.s. f1(s, Y 2, Z2) ≤ f2(s, Y 2, Z2) a.s. a.e.(s) and if (Ai
t)(i = 1, 2) are

continuous, and {A2
t −A1

t} is an increasing process, then ∀0 ≤ t ≤ T , we have Y 1
t ≤ Y 2

t a.s.;

(ii) If ξ1 ≥ ξ2 a.s. f1(s, Y 2, Z2) ≥ f2(s, Y 2, Z2) a.s. a.e.(s) and if (Ai
t) (i = 1, 2) are

continuous, and {A1
t −A2

t} is an increasing process, then ∀0 ≤ t ≤ T , we have Y 1
t ≥ Y 2

t , a.s..

In order to prove Theorem 3.1, we need the following lemma.

Lemma 3.2 Let Xt = X0 + Mt + Vt be a continuous semi-martingale, where (Mt) a
continuous local martingale with M0 = 0 and (Vt) a continuous process of finite variation
with V0 = 0. Then

X+
t

2 = X+
0

2 + 2
∫ t

0

X+
s dMs + 2

∫ t

0

X+
s dVs +

∫ t

0

I(Xs>0)d〈M〉s.

Proof Applying Itö formula to the Tanaka-Meyer formula, it is easy to prove this. For
details we refer to Cao [3].

Proof of Theorem 3.1 We only need to prove (i), because (ii) can be deduced from (i)
easily. Let Y 1 and Y 2 be the solutions to (3) and (4), respectively, and denote Yt = Y 1

t −Y 2
t ,

ξ = ξ1 − ξ2, Zt = Z1
t − Z2

t , At = A1
t −A2

t .

From (3) and (4), we have

Yt = ξ +
∫ T

t

[f1(s, Y 1
s , Z1

s )− f2(s, Y 2
s , Z2

s )]d〈M〉s + AT −At −
∫ T

t

ZsdMs

= Y0 −
∫ t

0

[f1(s, Y 1
s , Z1

s )− f2(s, Y 2
s , Z2

s )]d〈M〉s −At +
∫ t

0

ZsdMs.

It is easily seen that Yt is a continuous semi-martingale. By Lemma 3.2, we obtain

Y +
t

2 =ξ+2 + 2
∫ T

t

Y +
s [f1(s, Y 1

s , Z1
s )− f2(s, Y 2

s , Z2
s )]d〈M〉s − 2

∫ T

t

Y +
s ZsdMs

+ 2
∫ T

t

Y +
s dAs −

∫ T

t

I(Ys>0)|Zs|2d〈M〉s.
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Since ξ ≤0, (At) is a decreasing process, we get

Y +
t

2 +
∫ T

t

I(Ys>0)|Zs|2d〈M〉s

≤2
∫ T

t

Y +
s [f1(s, Y 1

s , Z1
s )− f2(s, Y 2

s , Z2
s )]d〈M〉s − 2

∫ T

t

Y +
s ZsdMs

≤2
∫ T

t

Y +
s [f1(s, Y 1

s , Z1
s )− f1(s, Y 2

s , Z2
s )]d〈M〉s − 2

∫ T

t

Y +
s ZsdMs.

Obviously, {∫ T

t
Y +

s ZsdMs, t ∈ [0, T ]} is a martingale (cf. [3]). Then by (H.2) and the
elementary inequality 2|uv| ≤ 1

c
u2 + cv2 for any c > 0, we have

EY +
t

2 + E

∫ T

t

I(Ys>0)|Zs|2d〈M〉s

≤2E

∫ T

t

Y +
s [f1(s, Y 1

s , Z1
s )− f1(s, Y 2

s , Z2
s )]d〈M〉s

=2E

∫ T

t

Y +
s I(Ys>0)[f1(s, Y 1

s , Z1
s )− f1(s, Y 2

s , Z2
s )]d〈M〉s

≤E

∫ T

t

[cY +
s

2 +
1
c
I(Ys>0)(f1(s, Y 1

s , Z1
s )− f1(s, Y 2

s , Z2
s ))2]d〈M〉s

≤E

∫ T

t

[cY +
s

2 +
2K

c
I(Ys>0)(Y 2

s + Z2
s )]d〈M〉s

=E

∫ T

t

[(c +
2K

c
)Y +

s

2 +
2K

c
I(Ys>0)|Zs|2)]d〈M〉s.

Choosing c = 2K, we obtain

EY +
t

2 ≤ (2K + 1)
∫ T

t

EY +
s

2
d〈M〉s,

which implies that EY +
t

2 = 0 for all t ∈ [0, T ] by Gronwall’s lemma. As Y +
t

2 is continuous,
we have Y +

t = 0, for t ∈ [0, T ] a.s. The theorem is proved.

References

[1] Peng Shige. A generalized dynamic programming principle and Hamilton-Jacob-Bellman equa-

tion[J]. Stochastics, 1992, 38: 119–134.

[2] Wang Xiangjun. On backward stochastic differential equation by a continuous semi-martingale[J].

J. of Math., 1999, 19(1): 45–50.

[3] Cao Zhigang, Yan Jiaan. A comparison theorem for solutions of backward stochastic differential

equations[J]. Advanced in Mathematics, 1999, 28: 304–308.

[4] Mao Xuerong. Adapted solutions of backward stochastic differential equations with non-Lipschitz

coeffcients[J]. Stochastic Process Appl., 1995, 58: 281–292.



No. 1 Comparison theorem for solutions of BSDEs driven by continuous semi-martingales 11

[5] Lepeltier J, Martin J. Backward stochastic differential equations with continuous coeffcient[J].

Statist. Probab. Lett., 1997, 32: 425–430.

[6] Li Shiyu, Gao Wujun. Solution of backward stochaistic differential equations driven by contious

local martingales[J]. J. Jiangxi University of Science and Technology, 2009, 30(5): 71–73.

[7] Fan Shengjun, Jiang Long. Finite and infinite time interval BSDEs with non-Lipschitz coefficients[J].

Statistics and Probability Letters, 2010, 80: 962–968.

[8] Li Juan. Backward stochastic differential equations with general martingale[J]. J. Shandong Univer-

sity, 2005, 40(4): 70–76.

[9] Wang Y, Huang Z. Backward stochastic differential equations with non-Lipschitz coefficients[J].

Statist. Probab. Lett., 2009, 79: 1438–1443.

[10] Fan Shengjun, Jiang Long. One-dimensional BSDEs with finite and infinite time horizons[J].

Stochastic Proc. Appl., 2011, 121: 427–440.

[11] Pardoux E, Peng Shige. Adapted solution of a backward stochastic differential equation [J]. Systems

Control Lett., 1990, 14: 55–66.

由连续半鞅驱动的倒向随机微分方程解的比较定理

李师煜 ,李文学 ,高武军

(江西理工大学理学院, 江西 赣州 341000)

摘要: 彭实戈[1]首先建立了一维倒向随机微分方程的比较定理, 本文在Lipschitz条件下研究由连续半

鞅驱动的倒向随机微分方程, 我们将比较定理推广到此类倒向随机微分方程, 并且证明方法比彭实戈[1]的更

加直接和简单.
关键词: 倒向随机微分方程; 比较定理; 连续半鞅
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